Subword complexes and edge subdivisions
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 129-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite Coxeter group, a subword complex is a simplicial complex associated with a pair $(\mathbf Q,\pi)$, where $\mathbf Q$ is a word in the alphabet of simple reflections and $\pi$ is a group element. We discuss the transformations of such a complex that are induced by braid moves of the word $\mathbf Q$. We show that under certain conditions, such a transformation is a composition of edge subdivisions and inverse edge subdivisions. In this case, we describe how the $H$- and $\gamma$-polynomials change under the transformation. This case includes all braid moves for groups with simply laced Coxeter diagrams.
@article{TRSPY_2014_286_a6,
     author = {M. A. Gorsky},
     title = {Subword complexes and edge subdivisions},
     journal = {Informatics and Automation},
     pages = {129--143},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/}
}
TY  - JOUR
AU  - M. A. Gorsky
TI  - Subword complexes and edge subdivisions
JO  - Informatics and Automation
PY  - 2014
SP  - 129
EP  - 143
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/
LA  - ru
ID  - TRSPY_2014_286_a6
ER  - 
%0 Journal Article
%A M. A. Gorsky
%T Subword complexes and edge subdivisions
%J Informatics and Automation
%D 2014
%P 129-143
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/
%G ru
%F TRSPY_2014_286_a6
M. A. Gorsky. Subword complexes and edge subdivisions. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 129-143. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/

[1] Aisbett N., Gamma-vectors of edge subdivisions of the boundary of the cross polytope, E-print, 2012, arXiv: 1209.1789 [math.CO] | MR

[2] Björner A., Brenti F., Combinatorics of Coxeter groups, Grad. Texts Math., 231, Springer, New York, 2005 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, E-print, 2012, arXiv: 1210.2368 [math.AT] | MR

[4] Buchstaber V.M., Volodin V.D., “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari lattices and related structures: Tamari memorial Festschrift, Prog. Math., 299, Birkhäuser, Basel, 2012, 161–186 | Zbl

[5] Charney R., Davis M., “The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold”, Pac. J. Math., 171 (1995), 117–137 | MR | Zbl

[6] Ceballos C., Labbé J.-P., C. Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, E-print, 2011, arXiv: 1108.1776 [math.CO] | MR

[7] Ceballos C., Pilaud V., Denominator vectors and compatibility degrees in cluster algebras of finite type, E-print, 2013, arXiv: 1302.1052 [math.CO] | MR

[8] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. Math. Ser. 2, 158 (2003), 977–1018 | DOI | MR | Zbl

[9] Gal Ś.R., “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete Comput. Geom., 34:2 (2005), 269–284 | DOI | MR | Zbl

[10] Gorsky M.A., “Subword complexes and nil-Hecke moves”, Model. i analiz inform. sistem, 20:6 (2013), 121–128

[11] Gorskii M.A., “Kompleksy podslov i 2-usechennye kuby”, UMN, 69:3 (2014), 179–180 | DOI

[12] Knutson A., Miller E., “Subword complexes in Coxeter groups”, Adv. Math., 184:1 (2004), 161–176 | DOI | MR | Zbl

[13] Knutson A., Miller E., “Gröbner geometry of Schubert polynomials”, Ann. Math. Ser. 2, 161 (2005), 1245–1318 | DOI | MR | Zbl

[14] Pilaud V., Stump C., Brick polytopes of spherical subword complexes: A new approach to generalized associahedra, E-print, 2011, arXiv: 1111.3349 [math.CO]

[15] Volodin V.D., “Kubicheskie realizatsii flagovykh nestoedrov i dokazatelstvo gipotezy Gala dlya nikh”, UMN, 65:1 (2010), 183–184 | DOI | MR | Zbl

[16] Volodin V.D., “Geometricheskaya realizatsiya $\gamma $-vektorov $2$-usechennykh kubov”, UMN, 67:3 (2012), 181–182 | DOI | MR | Zbl