Subword complexes and edge subdivisions
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 129-143

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite Coxeter group, a subword complex is a simplicial complex associated with a pair $(\mathbf Q,\pi)$, where $\mathbf Q$ is a word in the alphabet of simple reflections and $\pi$ is a group element. We discuss the transformations of such a complex that are induced by braid moves of the word $\mathbf Q$. We show that under certain conditions, such a transformation is a composition of edge subdivisions and inverse edge subdivisions. In this case, we describe how the $H$- and $\gamma$-polynomials change under the transformation. This case includes all braid moves for groups with simply laced Coxeter diagrams.
@article{TRSPY_2014_286_a6,
     author = {M. A. Gorsky},
     title = {Subword complexes and edge subdivisions},
     journal = {Informatics and Automation},
     pages = {129--143},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/}
}
TY  - JOUR
AU  - M. A. Gorsky
TI  - Subword complexes and edge subdivisions
JO  - Informatics and Automation
PY  - 2014
SP  - 129
EP  - 143
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/
LA  - ru
ID  - TRSPY_2014_286_a6
ER  - 
%0 Journal Article
%A M. A. Gorsky
%T Subword complexes and edge subdivisions
%J Informatics and Automation
%D 2014
%P 129-143
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/
%G ru
%F TRSPY_2014_286_a6
M. A. Gorsky. Subword complexes and edge subdivisions. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 129-143. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a6/