Smooth projective toric variety representatives in complex cobordism
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 347-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general problem in complex cobordism theory is to find useful representatives for cobordism classes. One particularly convenient class of complex manifolds consists of smooth projective toric varieties. The bijective correspondence between these varieties and smooth polytopes allows us to examine which complex cobordism classes contain a smooth projective toric variety by studying the combinatorics of polytopes. These combinatorial properties determine obstructions to a complex cobordism class containing a smooth projective toric variety. However, the obstructions are only necessary conditions, and the actual distribution of smooth projective toric varieties in complex cobordism appears to be quite complicated. The techniques used here provide descriptions of smooth projective toric varieties in low-dimensional cobordism.
@article{TRSPY_2014_286_a18,
     author = {Andrew Wilfong},
     title = {Smooth projective toric variety representatives in complex cobordism},
     journal = {Informatics and Automation},
     pages = {347--367},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a18/}
}
TY  - JOUR
AU  - Andrew Wilfong
TI  - Smooth projective toric variety representatives in complex cobordism
JO  - Informatics and Automation
PY  - 2014
SP  - 347
EP  - 367
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a18/
LA  - en
ID  - TRSPY_2014_286_a18
ER  - 
%0 Journal Article
%A Andrew Wilfong
%T Smooth projective toric variety representatives in complex cobordism
%J Informatics and Automation
%D 2014
%P 347-367
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a18/
%G en
%F TRSPY_2014_286_a18
Andrew Wilfong. Smooth projective toric variety representatives in complex cobordism. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 347-367. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a18/

[1] Atiyah M.F., “Immersions and embeddings of manifolds”, Topology, 1 (1962), 125–132 | DOI | MR | Zbl

[2] Batyrev V.V., “On the classification of smooth projective toric varieties”, Tôhoku Math. J. Ser. 2, 43 (1991), 569–585 | DOI | MR | Zbl

[3] Billera L.J., Lee C.W., “Sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes”, Bull. Amer. Math. Soc., 2:1 (1980), 181–185 | DOI | MR | Zbl

[4] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] Buchstaber V.M., Ray N., “Toric manifolds and complex cobordisms”, Russ. Math. Surv., 53 (1998), 371–373 | DOI | DOI | MR | Zbl

[6] Buchstaber V.M., Ray N., “Tangential structures on toric manifolds, and connected sums of polytopes”, Int. Math. Res. Not., 2001:4 (2001), 193–219 | DOI | MR | Zbl

[7] Conner P.E., Floyd E.E., The relation of cobordism to K-theories, Lect. Notes Math., 28, Springer, Berlin, 1966 | MR | Zbl

[8] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl

[9] Danilov V.I., “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | DOI | MR | Zbl

[10] Ewald G., Combinatorial convexity and algebraic geometry, Springer, New York, 1996 | MR | Zbl

[11] Fulton W., Introduction to toric varieties, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[12] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl

[13] Hattori A., “Integral characteristic numbers for weakly almost complex manifolds”, Topology, 5 (1966), 259–280 | DOI | MR | Zbl

[14] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl

[15] Hirzebruch F., “Komplexe Mannigfaltigkeiten”, Proc. Int. Congr. Math. 1958, Univ. Press, Cambridge, 1960, 119–136 | MR

[16] Hirzebruch F., Topological methods in algebraic geometry, 3rd ed., Springer, Berlin, 1966 | MR | Zbl

[17] Ishida M.-N., “Polyhedral Laurent series and Brion's equalities”, Int. J. Math., 1:3 (1990), 251–265 | DOI | MR | Zbl

[18] Jurkiewicz J., Torus embeddings, polyhedra, $k^*$-actions and homology, Diss. Math., 236, Panstwowe Wydawn. Nauk, Warszawa, 1985 | MR

[19] Kleinschmidt P., “A classification of toric varieties with few generators”, Aequationes Math., 35 (1988), 254–266 | DOI | MR | Zbl

[20] Libgober A.S., Wood J.W., “Uniqueness of the complex structure on Kähler manifolds of certain homotopy types”, J. Diff. Geom., 32 (1990), 139–154 | MR | Zbl

[21] Mayer K.H., Relationen zwischen charakteristischen Zahlen, Lect. Notes Math., 111, Springer, Berlin, 1969 | MR | Zbl

[22] Milnor J., “On the cobordism ring $\Omega ^*$ and a complex analogue. I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl

[23] Milnor J.W., Stasheff J.D., Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ, 1974 | MR | Zbl

[24] Novikov S.P., “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Sov. Math. Dokl., 1 (1960), 717–719 | MR | Zbl

[25] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Springer, Berlin, 1988 | MR | Zbl

[26] Stanley R.P., “The number of faces of a simplicial convex polytope”, Adv. Math., 35 (1980), 236–238 | DOI | MR | Zbl

[27] Stong R.E., “Relations among characteristic numbers. I”, Topology, 4 (1965), 267–281 | DOI | MR | Zbl

[28] Stong R.E., Notes on cobordism theory, Princeton Univ. Press, Princeton, NJ, 1968 | MR | Zbl

[29] Ustinovsky Yu., Characteristic numbers of toric varieties from combinatorial point of view, Talk at the Toric Topology Meeting (Osaka, Nov. 2011) http://www.sci.osaka-cu.ac.jp/~masuda/toric/Ustinovskiy.pdf

[30] Wilfong A., Toric varieties and cobordism, PhD Thesis, Univ. Kentucky, 2013