Toric origami manifolds and multi-fans
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 331-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a toric origami manifold, which weakens the notion of a symplectic toric manifold, was introduced by A. Cannas da Silva, V. Guillemin and A. R. Pires. They showed that toric origami manifolds bijectively correspond to origami templates via moment maps, where an origami template is a collection of Delzant polytopes with some folding data. Like a fan is associated to a Delzant polytope, a multi-fan introduced by A. Hattori and M. Masuda can be associated to an oriented origami template. In this paper, we discuss their relationship and show that any simply connected compact smooth $4$-manifold with a smooth action of $T^2$ can be a toric origami manifold. We also characterize products of even dimensional spheres which can be toric origami manifolds.
@article{TRSPY_2014_286_a17,
     author = {Mikiya Masuda and Seonjeong Park},
     title = {Toric origami manifolds and multi-fans},
     journal = {Informatics and Automation},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a17/}
}
TY  - JOUR
AU  - Mikiya Masuda
AU  - Seonjeong Park
TI  - Toric origami manifolds and multi-fans
JO  - Informatics and Automation
PY  - 2014
SP  - 331
EP  - 346
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a17/
LA  - en
ID  - TRSPY_2014_286_a17
ER  - 
%0 Journal Article
%A Mikiya Masuda
%A Seonjeong Park
%T Toric origami manifolds and multi-fans
%J Informatics and Automation
%D 2014
%P 331-346
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a17/
%G en
%F TRSPY_2014_286_a17
Mikiya Masuda; Seonjeong Park. Toric origami manifolds and multi-fans. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 331-346. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a17/

[1] Bredon G.E., Introduction to compact transformation groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR | Zbl

[2] Cannas da Silva A., “Fold forms for four-folds”, J. Symplectic Geom., 8 (2010), 189–203, arXiv: 0909.4067 [math.SG] | DOI | MR | Zbl

[3] Cannas da Silva A., Guillemin V., Pires A.R., “Symplectic origami”, Int. Math. Res. Not., 2011:18 (2011), 4252–4293, arXiv: 0909.4065 [math.SG] | MR | Zbl

[4] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[5] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116 (1988), 315–339 | MR | Zbl

[6] Guillemin V., Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Prog. Math., 122, Birkhäuser, Basel, 1994 | MR | Zbl

[7] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40 (2003), 1–68 | MR | Zbl

[8] Higashitani A., Masuda M., Lattice multi-polygons, E-print, 2012, arXiv: 1204.0088 [math.CO]

[9] Holm T.S., Pires A.R., “The topology of toric origami manifolds”, Math. Res. Lett., 20:5 (2013), 885–906, arXiv: 1211.6435 [math.SG] | DOI | MR | Zbl

[10] Ishida H., Fukukawa Y., Masuda M., “Topological toric manifolds”, Moscow Math. J., 13:1 (2013), 57–98, arXiv: 1012.1786 [math.AT] | MR | Zbl

[11] Masuda M., “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J. Ser. 2, 51 (1999), 237–265 | DOI | MR | Zbl

[12] Masuda M., Panov T., “On the cohomology of torus manifolds”, Osaka J. Math., 43 (2006), 711–746 | MR | Zbl

[13] Orlik P., Raymond F., “Actions of the torus on 4-manifolds. I”, Trans. Amer. Math. Soc., 152 (1970), 531–559 | MR | Zbl

[14] Wiemeler M., “Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds”, Math. Z., 273 (2013), 1063–1084, arXiv: 1110.1168 [math.GT] | DOI | MR | Zbl