Complex projective towers and their cohomological rigidity up to dimension six
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex projective tower, or simply a $\mathbb C\mathrm P$-tower, is an iterated complex projective fibration starting from a point. In this paper we classify all six-dimensional $\mathbb C\mathrm P$-towers up to diffeomorphism, and as a consequence we show that all such manifolds are cohomologically rigid, i.e., they are completely determined up to diffeomorphism by their cohomology rings.
@article{TRSPY_2014_286_a16,
     author = {Shintar\^o Kuroki and DongYoup Suh},
     title = {Complex projective towers and their cohomological rigidity up to dimension six},
     journal = {Informatics and Automation},
     pages = {308--330},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a16/}
}
TY  - JOUR
AU  - Shintarô Kuroki
AU  - DongYoup Suh
TI  - Complex projective towers and their cohomological rigidity up to dimension six
JO  - Informatics and Automation
PY  - 2014
SP  - 308
EP  - 330
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a16/
LA  - en
ID  - TRSPY_2014_286_a16
ER  - 
%0 Journal Article
%A Shintarô Kuroki
%A DongYoup Suh
%T Complex projective towers and their cohomological rigidity up to dimension six
%J Informatics and Automation
%D 2014
%P 308-330
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a16/
%G en
%F TRSPY_2014_286_a16
Shintarô Kuroki; DongYoup Suh. Complex projective towers and their cohomological rigidity up to dimension six. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a16/

[1] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR

[2] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR

[3] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[4] Choi S., Classification of Bott manifolds up to dimension eight, E-print, 2011, arXiv: 1112.2321 [math.AT]

[5] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | DOI | MR | Zbl

[6] Proc. Steklov Inst. Math., 275 (2011), 177–190, arXiv: 1102.1359 [math.AT] | DOI | MR | Zbl

[7] Choi S., Park S., Suh D.Y., Topological classification of quasitoric manifolds with the second Betti number $2$, E-print, 2010, arXiv: 1005.5431 [math.AT]

[8] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[9] Grossberg M., Karshon Y., “Bott towers, complete integrability, and the extended character of representations”, Duke Math. J., 76:1 (1994), 23–58 | DOI | MR | Zbl

[10] Hirzebruch F., “Über eine Klasse von einfach-zusammenhängenden komplexen Mannigfaltigkeiten”, Math. Ann., 124 (1951), 77–86 | DOI | MR | Zbl

[11] Husemoller D., Fibre bundles, Grad. Texts Math., 20, 3rd ed., Springer, New York, 1994 | DOI | MR

[12] Kuroki S., Suh D.Y., Cohomological non-rigidity of eight-dimensional complex projective towers, Preprint 13-12. OCAMI Preprint Ser., Osaka City Univ., Osaka, 2013

[13] Masuda M., Panov T.E., “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199 (2008), 1201–1223 | DOI | DOI | MR | Zbl

[14] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | DOI | MR | Zbl

[15] Schwarzenberger R.L.E., “Vector bundles on algebraic surfaces”, Proc. London Math. Soc. Ser. 3., 11 (1961), 601–622 | DOI | MR | Zbl