Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a15, author = {Kiumars Kaveh and Askold Khovanskii}, title = {Convex bodies and multiplicities of ideals}, journal = {Informatics and Automation}, pages = {291--307}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/} }
Kiumars Kaveh; Askold Khovanskii. Convex bodies and multiplicities of ideals. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 291-307. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/
[1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, V. 1, Modern Birkhäuser Classics, Birkhäuser, New York, 2012
[2] Burago Yu.D., Zalgaller V.A., Geometric inequalities, Grundl. Math. Wiss., 285, Springer, Berlin, 1988 | MR | Zbl
[3] Cutkosky S.D., “Multiplicities associated to graded families of ideals”, Algebra Number Theory., 7:9 (2013), 2059–2083, arXiv: 1206.4077 [math.AC] | DOI | MR | Zbl
[4] Cutkosky S.D., Multiplicities of graded families of linear series and ideals, E-print, 2013, arXiv: 1301.5613 [math.AG]
[5] Cutkosky S.D., Asymptotic multiplicities, E-print, 2013, arXiv: 1311.1432 [math.AC]
[6] de Fernex T., Ein L., Mustaţă M., “Multiplicities and log canonical threshold”, J. Algebr. Geom., 13:3 (2004), 603–615 | DOI | MR | Zbl
[7] Fillastre F., “Fuchsian convex bodies: Basics of Brunn–Minkowski theory”, Geom. Funct. Anal., 23:1 (2013), 295–333 | DOI | MR | Zbl
[8] Fulger M., Local volumes on normal algebraic varieties, E-print, 2011, arXiv: 1105.2981 [math.AG]
[9] Hübl R., “Completions of local morphisms and valuations”, Math. Z., 236:1 (2001), 201–214 | DOI | MR | Zbl
[10] Kaveh K., Khovanskii A.G., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | MR | Zbl
[11] Kaveh K., Khovanskii A.G., On mixed multiplicities of ideals, E-print, 2013, arXiv: 1310.7979 [math.AG]
[12] Khovanskii A.G., “Algebra and mixed volumes”: Burago Yu.D., Zalgaller V.A., Geometric inequalities, Ch. 4, Addendum 3, Grundl. Math. Wiss., 285, Springer, Berlin, 1988, 182–207
[13] Khovanskii A.G., “Mnogogrannik Nyutona, polinom Gilberta i summy konechnykh mnozhestv”, Funkts. analiz i ego pril., 26:4 (1992), 57–63 | MR
[14] Khovanskii A., Timorin V., Alexandrov–Fenchel inequality for coconvex bodies, E-print, 2013, arXiv: 1305.4484 [math.MG]
[15] Khovanskii A., Timorin V., On the theory of coconvex bodies, E-print, 2013, arXiv: 1308.1781 [math.MG]
[16] Kouchnirenko A.G., “Polyèdres de Newton et nombres de Milnor”, Invent. math., 32:1 (1976), 1–31 | DOI | MR
[17] Lazarsfeld R., Mustaţă M., “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm. Super. Ser. 4, 42:5 (2009), 783–835 | MR | Zbl
[18] Lech C., “Inequalities related to certain couples of local rings”, Acta math., 112 (1964), 69–89 | DOI | MR | Zbl
[19] Mustaţă M., “On multiplicities of graded sequences of ideals”, J. Algebra., 256:1 (2002), 229–249 | DOI | MR | Zbl
[20] Okounkov A., “Brunn–Minkowski inequality for multiplicities”, Invent. math., 125:3 (1996), 405–411 | DOI | MR | Zbl
[21] Okounkov A., “Why would multiplicities be log-concave?”, The orbit method in geometry and physics (Marseille, 2000), Prog. Math., 213, Birkhäuser, Boston, MA, 2003, 329–347 | MR | Zbl
[22] Rees D., Sharp R.Y., “On a theorem of B. Teissier on multiplicities of ideals in local rings”, J. London Math. Soc. Ser. 2, 18:3 (1978), 449–463 | DOI | MR | Zbl
[23] Teissier B., “Sur une inégalité à la Minkowski pour les multiplicités”, Ann. Math. Ser. 2, 106:1 (1977), 38–44 | MR | Zbl
[24] Teissier B., Jacobian Newton polyhedra and equisingularity, E-print, 2012, arXiv: 1203.5595 [math.AG] | MR
[25] Zariski O., Samuel P., Commutative algebra, Vol. 2, Grad. Texts Math., 29, Springer, New York, 1976 | Zbl