Convex bodies and multiplicities of ideals
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 291-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

We associate convex regions in $\mathbb R^n$ to $\mathfrak m$-primary graded sequences of subspaces, in particular $\mathfrak m$-primary graded sequences of ideals, in a large class of local algebras (including analytically irreducible local domains). These convex regions encode information about Samuel multiplicities. This is in the spirit of the theory of Gröbner bases and Newton polyhedra on the one hand, and the theory of Newton–Okounkov bodies for linear systems on the other hand. We use this to give a new proof as well as a generalization of a Brunn–Minkowski inequality for multiplicities due to Teissier and Rees–Sharp.
@article{TRSPY_2014_286_a15,
     author = {Kiumars Kaveh and Askold Khovanskii},
     title = {Convex bodies and multiplicities of ideals},
     journal = {Informatics and Automation},
     pages = {291--307},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/}
}
TY  - JOUR
AU  - Kiumars Kaveh
AU  - Askold Khovanskii
TI  - Convex bodies and multiplicities of ideals
JO  - Informatics and Automation
PY  - 2014
SP  - 291
EP  - 307
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/
LA  - en
ID  - TRSPY_2014_286_a15
ER  - 
%0 Journal Article
%A Kiumars Kaveh
%A Askold Khovanskii
%T Convex bodies and multiplicities of ideals
%J Informatics and Automation
%D 2014
%P 291-307
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/
%G en
%F TRSPY_2014_286_a15
Kiumars Kaveh; Askold Khovanskii. Convex bodies and multiplicities of ideals. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 291-307. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a15/

[1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, V. 1, Modern Birkhäuser Classics, Birkhäuser, New York, 2012

[2] Burago Yu.D., Zalgaller V.A., Geometric inequalities, Grundl. Math. Wiss., 285, Springer, Berlin, 1988 | MR | Zbl

[3] Cutkosky S.D., “Multiplicities associated to graded families of ideals”, Algebra Number Theory., 7:9 (2013), 2059–2083, arXiv: 1206.4077 [math.AC] | DOI | MR | Zbl

[4] Cutkosky S.D., Multiplicities of graded families of linear series and ideals, E-print, 2013, arXiv: 1301.5613 [math.AG]

[5] Cutkosky S.D., Asymptotic multiplicities, E-print, 2013, arXiv: 1311.1432 [math.AC]

[6] de Fernex T., Ein L., Mustaţă M., “Multiplicities and log canonical threshold”, J. Algebr. Geom., 13:3 (2004), 603–615 | DOI | MR | Zbl

[7] Fillastre F., “Fuchsian convex bodies: Basics of Brunn–Minkowski theory”, Geom. Funct. Anal., 23:1 (2013), 295–333 | DOI | MR | Zbl

[8] Fulger M., Local volumes on normal algebraic varieties, E-print, 2011, arXiv: 1105.2981 [math.AG]

[9] Hübl R., “Completions of local morphisms and valuations”, Math. Z., 236:1 (2001), 201–214 | DOI | MR | Zbl

[10] Kaveh K., Khovanskii A.G., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | MR | Zbl

[11] Kaveh K., Khovanskii A.G., On mixed multiplicities of ideals, E-print, 2013, arXiv: 1310.7979 [math.AG]

[12] Khovanskii A.G., “Algebra and mixed volumes”: Burago Yu.D., Zalgaller V.A., Geometric inequalities, Ch. 4, Addendum 3, Grundl. Math. Wiss., 285, Springer, Berlin, 1988, 182–207

[13] Khovanskii A.G., “Mnogogrannik Nyutona, polinom Gilberta i summy konechnykh mnozhestv”, Funkts. analiz i ego pril., 26:4 (1992), 57–63 | MR

[14] Khovanskii A., Timorin V., Alexandrov–Fenchel inequality for coconvex bodies, E-print, 2013, arXiv: 1305.4484 [math.MG]

[15] Khovanskii A., Timorin V., On the theory of coconvex bodies, E-print, 2013, arXiv: 1308.1781 [math.MG]

[16] Kouchnirenko A.G., “Polyèdres de Newton et nombres de Milnor”, Invent. math., 32:1 (1976), 1–31 | DOI | MR

[17] Lazarsfeld R., Mustaţă M., “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm. Super. Ser. 4, 42:5 (2009), 783–835 | MR | Zbl

[18] Lech C., “Inequalities related to certain couples of local rings”, Acta math., 112 (1964), 69–89 | DOI | MR | Zbl

[19] Mustaţă M., “On multiplicities of graded sequences of ideals”, J. Algebra., 256:1 (2002), 229–249 | DOI | MR | Zbl

[20] Okounkov A., “Brunn–Minkowski inequality for multiplicities”, Invent. math., 125:3 (1996), 405–411 | DOI | MR | Zbl

[21] Okounkov A., “Why would multiplicities be log-concave?”, The orbit method in geometry and physics (Marseille, 2000), Prog. Math., 213, Birkhäuser, Boston, MA, 2003, 329–347 | MR | Zbl

[22] Rees D., Sharp R.Y., “On a theorem of B. Teissier on multiplicities of ideals in local rings”, J. London Math. Soc. Ser. 2, 18:3 (1978), 449–463 | DOI | MR | Zbl

[23] Teissier B., “Sur une inégalité à la Minkowski pour les multiplicités”, Ann. Math. Ser. 2, 106:1 (1977), 38–44 | MR | Zbl

[24] Teissier B., Jacobian Newton polyhedra and equisingularity, E-print, 2012, arXiv: 1203.5595 [math.AG] | MR

[25] Zariski O., Samuel P., Commutative algebra, Vol. 2, Grad. Texts Math., 29, Springer, New York, 1976 | Zbl