Deformations and contractions of algebraic structures
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 262-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the basic notions of versal deformation theory of algebraic structures and compare it with the analytic theory. As a special case, we consider the notion of versal deformation used by Arnold. With the help of versal deformation we get a stratification of the moduli space into projective orbifolds. We compare this with Arnold's stratification in the case of similarity of matrices. The other notion we discuss is the opposite notion of contraction.
@article{TRSPY_2014_286_a13,
     author = {Alice Fialowski},
     title = {Deformations and contractions of algebraic structures},
     journal = {Informatics and Automation},
     pages = {262--274},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a13/}
}
TY  - JOUR
AU  - Alice Fialowski
TI  - Deformations and contractions of algebraic structures
JO  - Informatics and Automation
PY  - 2014
SP  - 262
EP  - 274
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a13/
LA  - en
ID  - TRSPY_2014_286_a13
ER  - 
%0 Journal Article
%A Alice Fialowski
%T Deformations and contractions of algebraic structures
%J Informatics and Automation
%D 2014
%P 262-274
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a13/
%G en
%F TRSPY_2014_286_a13
Alice Fialowski. Deformations and contractions of algebraic structures. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 262-274. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a13/

[1] Arnold V.I., “On matrices depending on parameters”, Russ. Math. Surv., 26:2 (1971), 29–43 | DOI | MR

[2] Fialowski A., “Deformations of Lie algebras”, Math. USSR, Sb., 55:2 (1986), 467–473 | DOI | MR | Zbl

[3] Fialowski A., “An example of formal deformations of Lie algebras”, Deformation theory of algebras and structures and applications, NATO ASI Ser. C: Math. Phys. Sci., 247, Kluwer, Dordrecht, 1988, 375–401 | MR

[4] Fialowski A., Fuchs D., “Construction of miniversal deformations of Lie algebras”, J. Funct. Anal., 161 (1999), 76–110 | DOI | MR | Zbl

[5] Fialowski A., de Montigny M., “Deformations and contractions of Lie algebras”, J. Phys. A: Math. Gen., 38:28 (2005), 6335–6349 | DOI | MR | Zbl

[6] Fialowski A., Schlichenmaier M., “Global deformations of the Witt algebra of Krichever–Novikov type”, Commun. Contemp. Math., 5 (2003), 921–945 | DOI | MR | Zbl

[7] Fialowski A., Schlichenmaier M., “Global geometric deformations of current algebras as Krichever–Novikov type algebras”, Commun. Math. Phys., 260 (2005), 579–612 | DOI | MR | Zbl

[8] Gerstenhaber M., “On the deformation of rings and algebras”, Ann. Math. Ser. 2, 79 (1964), 59–103 | DOI | MR | Zbl

[9] Inönü E., Wigner E.P., “On the contraction of groups and their representations”, Proc. Natl. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl

[10] Krichever I.M., Novikov S.P., “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21 (1987), 126–142 | DOI | MR | Zbl

[11] Lévy-Leblond J.-M., “Une nouvelle limite non-relativistic du groupe de Poincaré”, Ann. Inst. Henri Poincaré A, 3 (1965), 1–12 | MR | Zbl

[12] Saletan E.J., “Contraction of Lie groups”, J. Math. Phys., 2 (1961), 1–21 | DOI | MR | Zbl

[13] Schlessinger M., “Functors of Artin rings”, Trans. Am. Math. Soc., 130 (1968), 208–222 | DOI | MR | Zbl

[14] Weimar-Woods E., “Contractions, generalized Inönü–Wigner contractions and deformations of finite-dimensional Lie algebras”, Rev. Math. Phys., 12:11 (2000), 1505–1529 | DOI | MR | Zbl