Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_286_a12, author = {Vladimir Dragovi\'c and Katarina Kuki\'c}, title = {The {Sokolov} case, integrable {Kirchhoff} elasticae, and genus~2 theta functions via discriminantly separable polynomials}, journal = {Informatics and Automation}, pages = {246--261}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/} }
TY - JOUR AU - Vladimir Dragović AU - Katarina Kukić TI - The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials JO - Informatics and Automation PY - 2014 SP - 246 EP - 261 VL - 286 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/ LA - en ID - TRSPY_2014_286_a12 ER -
%0 Journal Article %A Vladimir Dragović %A Katarina Kukić %T The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials %J Informatics and Automation %D 2014 %P 246-261 %V 286 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/ %G en %F TRSPY_2014_286_a12
Vladimir Dragović; Katarina Kukić. The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 246-261. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/
[1] Baker H.F., Abelian functions: Abel's theorem and the allied theory of theta functions, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[2] Buchstaber V.M., “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | Zbl
[3] Buchstaber V.M., “$n$-Valued groups: Theory and applications”, Moscow Math. J., 6 (2006), 57–84 | MR | Zbl
[4] Buchstaber V.M., Dragović V., Two-valued groups, Kummer varieties and integrable billiards, E-print, 2010, arXiv: 1011.2716 [math.AG]
[5] Buchstaber V.M., Novikov S.P., “Formal groups, power systems and Adams operators”, Math. USSR, Sb., 13 (1971), 80–116 | DOI | Zbl
[6] Dragović V., “Generalization and geometrization of the Kowalevski top”, Commun. Math. Phys., 298:1 (2010), 37–64 | DOI | MR | Zbl
[7] Dragović V., Kukić K., “New examples of systems of the Kowalevski type”, Regul. Chaotic Dyn., 16:5 (2011), 484–495 | DOI | MR
[8] Dragović V., Kukić K., “Discriminantly separable polynomials and quad-equations”, J. Geom. Mech., 2014 (to appear)
[9] Dragović V., Kukić K., Systems of the Kowalevski type and discriminantly separable polynomials, E-print, 2013, arXiv: 1304.2568 [math.DS] | MR
[10] Dubrovin B.A., “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[11] Golubev V.V., Lectures on integration of the equations of motion of a rigid body about a fixed point, Fond. Natl. Sci., Israel, 1960 | MR | Zbl
[12] Jurdjevic V., “Integrable Hamiltonian systems on Lie groups: Kowalewski type”, Ann. Math. Ser. 2, 150 (1999), 605–644 | DOI | MR | Zbl
[13] Komarov I.V., “Kowalewski basis for the hydrogen atom”, Theor. Math. Phys., 47 (1981), 320–324 | DOI | MR
[14] Komarov I.V., Kuznetsov V.B., “Kowalewski's top on the Lie algebras $o(4)$, $e(3)$, and $o(3,1)$”, J. Phys. A: Math. Gen., 23:6 (1990), 841–846 | DOI | MR | Zbl
[15] Komarov I.V., Sokolov V.V., Tsiganov A.V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A: Math. Gen., 36:29 (2003), 8035–8048 | DOI | MR | Zbl
[16] Kötter F., “Sur le cas traité par M$^\textup{me}$ Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta math., 17 (1893), 209–263 | DOI | MR
[17] Kowalevski S., “Sur la problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR
[18] Mumford D., Tata lectures on theta. I, Birkhäuser, Boston, 1983 ; Tata lectures on theta. II, Birkhäuser, Boston, 1984 | MR | Zbl | MR | Zbl
[19] Sokolov V.V., “A new integrable case for the Kirchhoff equation”, Theor. Math. Phys., 129 (2001), 1335–1340 | DOI | DOI | MR | Zbl
[20] Sokolov V.V., “Generalized Kowalevski top: New integrable cases on $e(3)$ and $so(4)$”, The Kowalevski property, eds. V.B. Kuznetsov, Amer. Math. Soc., Providence, RI, 2002, 307–313 | MR | Zbl