The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials
Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 246-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the discriminantly separable polynomials of degree 2 in each of three variables to integrate explicitly the Sokolov case of a rigid body in an ideal fluid and integrable Kirchhoff elasticae in terms of genus 2 theta functions. The integration procedure is a natural generalization of the one used by Kowalevski in her celebrated 1889 paper. The algebraic background for the most important changes of variables in this integration procedure is associated to the structure of the two-valued groups on an elliptic curve. Such two-valued groups have been introduced by V. M. Buchstaber.
@article{TRSPY_2014_286_a12,
     author = {Vladimir Dragovi\'c and Katarina Kuki\'c},
     title = {The {Sokolov} case, integrable {Kirchhoff} elasticae, and genus~2 theta functions via discriminantly separable polynomials},
     journal = {Informatics and Automation},
     pages = {246--261},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/}
}
TY  - JOUR
AU  - Vladimir Dragović
AU  - Katarina Kukić
TI  - The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials
JO  - Informatics and Automation
PY  - 2014
SP  - 246
EP  - 261
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/
LA  - en
ID  - TRSPY_2014_286_a12
ER  - 
%0 Journal Article
%A Vladimir Dragović
%A Katarina Kukić
%T The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials
%J Informatics and Automation
%D 2014
%P 246-261
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/
%G en
%F TRSPY_2014_286_a12
Vladimir Dragović; Katarina Kukić. The Sokolov case, integrable Kirchhoff elasticae, and genus~2 theta functions via discriminantly separable polynomials. Informatics and Automation, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 246-261. http://geodesic.mathdoc.fr/item/TRSPY_2014_286_a12/

[1] Baker H.F., Abelian functions: Abel's theorem and the allied theory of theta functions, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[2] Buchstaber V.M., “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | Zbl

[3] Buchstaber V.M., “$n$-Valued groups: Theory and applications”, Moscow Math. J., 6 (2006), 57–84 | MR | Zbl

[4] Buchstaber V.M., Dragović V., Two-valued groups, Kummer varieties and integrable billiards, E-print, 2010, arXiv: 1011.2716 [math.AG]

[5] Buchstaber V.M., Novikov S.P., “Formal groups, power systems and Adams operators”, Math. USSR, Sb., 13 (1971), 80–116 | DOI | Zbl

[6] Dragović V., “Generalization and geometrization of the Kowalevski top”, Commun. Math. Phys., 298:1 (2010), 37–64 | DOI | MR | Zbl

[7] Dragović V., Kukić K., “New examples of systems of the Kowalevski type”, Regul. Chaotic Dyn., 16:5 (2011), 484–495 | DOI | MR

[8] Dragović V., Kukić K., “Discriminantly separable polynomials and quad-equations”, J. Geom. Mech., 2014 (to appear)

[9] Dragović V., Kukić K., Systems of the Kowalevski type and discriminantly separable polynomials, E-print, 2013, arXiv: 1304.2568 [math.DS] | MR

[10] Dubrovin B.A., “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl

[11] Golubev V.V., Lectures on integration of the equations of motion of a rigid body about a fixed point, Fond. Natl. Sci., Israel, 1960 | MR | Zbl

[12] Jurdjevic V., “Integrable Hamiltonian systems on Lie groups: Kowalewski type”, Ann. Math. Ser. 2, 150 (1999), 605–644 | DOI | MR | Zbl

[13] Komarov I.V., “Kowalewski basis for the hydrogen atom”, Theor. Math. Phys., 47 (1981), 320–324 | DOI | MR

[14] Komarov I.V., Kuznetsov V.B., “Kowalewski's top on the Lie algebras $o(4)$, $e(3)$, and $o(3,1)$”, J. Phys. A: Math. Gen., 23:6 (1990), 841–846 | DOI | MR | Zbl

[15] Komarov I.V., Sokolov V.V., Tsiganov A.V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A: Math. Gen., 36:29 (2003), 8035–8048 | DOI | MR | Zbl

[16] Kötter F., “Sur le cas traité par M$^\textup{me}$ Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta math., 17 (1893), 209–263 | DOI | MR

[17] Kowalevski S., “Sur la problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR

[18] Mumford D., Tata lectures on theta. I, Birkhäuser, Boston, 1983 ; Tata lectures on theta. II, Birkhäuser, Boston, 1984 | MR | Zbl | MR | Zbl

[19] Sokolov V.V., “A new integrable case for the Kirchhoff equation”, Theor. Math. Phys., 129 (2001), 1335–1340 | DOI | DOI | MR | Zbl

[20] Sokolov V.V., “Generalized Kowalevski top: New integrable cases on $e(3)$ and $so(4)$”, The Kowalevski property, eds. V.B. Kuznetsov, Amer. Math. Soc., Providence, RI, 2002, 307–313 | MR | Zbl