$p$-Adic model of quantum mechanics and quantum channels
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 140-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $p$-adic realization of the standard statistical model of quantum mechanics is constructed. Within this realization, a $p$-adic linear bosonic channel is defined, and its properties are analyzed. In particular, a criterion for the existence of a linear Gaussian bosonic channel is obtained, and its explicit construction is described. It is shown that the $p$-adic Gaussian bosonic channels possess an additivity property.
@article{TRSPY_2014_285_a9,
     author = {E. I. Zelenov},
     title = {$p${-Adic} model of quantum mechanics and quantum channels},
     journal = {Informatics and Automation},
     pages = {140--153},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a9/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - $p$-Adic model of quantum mechanics and quantum channels
JO  - Informatics and Automation
PY  - 2014
SP  - 140
EP  - 153
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a9/
LA  - ru
ID  - TRSPY_2014_285_a9
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T $p$-Adic model of quantum mechanics and quantum channels
%J Informatics and Automation
%D 2014
%P 140-153
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a9/
%G ru
%F TRSPY_2014_285_a9
E. I. Zelenov. $p$-Adic model of quantum mechanics and quantum channels. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 140-153. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a9/

[1] Volovich I.V., Number theory as the ultimate physical theory, Preprint TH.4781/87, CERN, Geneva, 1987; “p-Adic Numbers”, Ultrametric Anal. Appl., 2:1 (2010), 77–87 | DOI | MR | Zbl

[2] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adic analysis and mathematical physics, World Sci., Singapore, 1994 | MR | Zbl

[3] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., “On $p$-adic mathematical physics”, p-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[4] Mumford D., “An analytic construction of degenerating curves over complete local rings”, Compos. math., 24 (1972), 129–174 | MR | Zbl

[5] Manin Yu.I., “$p$-Adicheskie avtomorfnye funktsii”, Sovremennye problemy matematiki, Itogi nauki i tekhniki, 3, VINITI, M., 1974, 5–92 | MR | Zbl

[6] Serre J.-P., Trees, Springer, Berlin, 1980 | MR | Zbl

[7] Zelenov E.I., “$p$-Adicheskaya beskonechnomernaya simplekticheskaya gruppa”, Izv. RAN. Ser. mat., 57:6 (1993), 29–51 | MR | Zbl

[8] Kholevo A.C., Statisticheskaya struktura kvantovoi teorii, In-t kompyut. issled., M.; Izhevsk, 2003

[9] Zelenov E.I., “Ob operatorakh koordinaty i impulsa v $p$-adicheskoi kvantovoi mekhanike”, TMF, 164:3 (2010), 426–434 | DOI | Zbl

[10] Zelenov E.I., “Modeli $p$-adicheskoi mekhaniki”, TMF, 174:2 (2013), 285–291 | DOI | Zbl

[11] Rieffel M.A., “On the uniqueness of the Heisenberg commutation relations”, Duke Math. J., 39 (1972), 745–752 | DOI | MR | Zbl

[12] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, Mir, M., 1975

[13] Kholevo A.C., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | Zbl

[14] Zelenov E.I., “Representations of commutation relations for $p$-adic systems of infinitely many degrees of freedom”, J. Math. Phys., 33 (1992), 178–188 | DOI | MR | Zbl

[15] Kholevo A.C., Kvantovye sistemy, kanaly, informatsiya, MTsNMO, M., 2010