A~model of relativistic dynamics
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 128-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of relativistic dynamics is proposed for classical (nonquantum) multiparticle systems within the Lagrangian formalism on the space of world lines.
@article{TRSPY_2014_285_a8,
     author = {V. V. Zharinov},
     title = {A~model of relativistic dynamics},
     journal = {Informatics and Automation},
     pages = {128--139},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a8/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - A~model of relativistic dynamics
JO  - Informatics and Automation
PY  - 2014
SP  - 128
EP  - 139
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a8/
LA  - ru
ID  - TRSPY_2014_285_a8
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T A~model of relativistic dynamics
%J Informatics and Automation
%D 2014
%P 128-139
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a8/
%G ru
%F TRSPY_2014_285_a8
V. V. Zharinov. A~model of relativistic dynamics. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 128-139. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a8/

[1] Stueckelberg E.C.G., “Remarque à propos de la création de paires de particules en théorie de relativité”, Helv. phys. acta., 14 (1941), 588–594 | MR

[2] Stueckelberg E.C.G., “La mécanique du point matériel en théorie de relativité et en théorie des quanta”, Helv. phys. acta., 15 (1942), 23–37 | MR

[3] Feynman R.P., “The development of the space-time view of quantum electrodynamics”, Phys. Today, 19:8 (1966), 31–44 | DOI

[4] Horwitz L.P., Piron C., “Relativistic dynamics”, Helv. phys. acta., 46 (1973), 316–326

[5] Fanchi J.R., Parametrized relativistic quantum theory, Kluwer, Dodrecht, 1993 | MR

[6] Horwitz L.P., Time and the evolution of states in relativistic classical and quantum mechanics, E-print, 1996, arXiv: hep-ph/9606330 | MR

[7] Fanchi J.R., “Manifestly covariant quantum theory with invariant evolution parameter in relativistic dynamics”, Found. Phys., 41 (2011), 4–32 | DOI | MR | Zbl

[8] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1979 | MR

[9] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, Gostekhizdat, M., 1955

[10] Landau L.D., Lifshits E.M., Teoreticheskaya fizika. T. 2: Teoriya polya, Fizmatgiz, M., 1962