Autowave processes in continual chains of unidirectionally coupled oscillators
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 89-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a mathematical model of a continual circular chain of unidirectionally coupled oscillators. It is a nonlinear hyperbolic boundary value problem obtained from a circular chain of unidirectionally coupled ordinary differential equations in the limit as the number of equations indefinitely increases. We study the attractors of this boundary value problem. Combining analytic and numerical methods, we establish that one of the following two alternatives takes place in this problem: either the buffer phenomenon (unbounded accumulation of stable periodic motions) or chaotic attractors of arbitrarily high Lyapunov dimensions.
@article{TRSPY_2014_285_a6,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Autowave processes in continual chains of unidirectionally coupled oscillators},
     journal = {Informatics and Automation},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a6/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Autowave processes in continual chains of unidirectionally coupled oscillators
JO  - Informatics and Automation
PY  - 2014
SP  - 89
EP  - 106
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a6/
LA  - ru
ID  - TRSPY_2014_285_a6
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Autowave processes in continual chains of unidirectionally coupled oscillators
%J Informatics and Automation
%D 2014
%P 89-106
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a6/
%G ru
%F TRSPY_2014_285_a6
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Autowave processes in continual chains of unidirectionally coupled oscillators. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 89-106. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a6/

[1] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “O yavleniyakh khaosa v koltse iz trekh odnonapravlenno svyazannykh generatorov”, ZhVMiMF, 46:10 (2006), 1809–1821 | MR

[2] Mischenko E.F., Sadovnichii V.A., Kolesov A.Yu., Rozov N.Kh., Mnogolikii khaos, Fizmatlit, M., 2012

[3] Kapitaniak T., Chua L.O., “Hyperchaotic attractors of unidirectionally-coupled Chua's circuits”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 4:2 (1994), 477–482 | DOI | MR | Zbl

[4] Mariño I.P., Pérez-Muñuzuri V., Pérez-Villar V., Sánchez E., Matías M.A., “Interaction of chaotic rotating waves in coupled rings of chaotic cells”, Physica D., 128 (1999), 224–235 | DOI

[5] Perlikowski P., Yanchuk S., Wolfrum M., Stefanski A., Mosiolek P., Kapitaniak T., “Routes to complex dynamics in a ring of unidirectionally coupled systems”, Chaos, 20:1 (2010), 013111 | DOI | MR

[6] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “Periodicheskie resheniya tipa beguschikh voln v koltsevykh tsepochkakh odnonapravlenno svyazannykh uravnenii”, TMF, 175:1 (2013), 62–83 | DOI | Zbl

[7] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “Relaksatsionnye avtokolebaniya v setyakh Khopfilda s zapazdyvaniem”, Izv. RAN. Ser. mat., 77:2 (2013), 53–96 | DOI | MR | Zbl

[8] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Dif. uravneniya, 49:10 (2013), 1227–1244 | Zbl

[9] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[10] Kolesov A.Yu., Rozov N.Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[11] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[12] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “K voprosu o realizuemosti stsenariya razvitiya turbulentnosti po Landau”, TMF, 158:2 (2009), 292–311 | DOI | MR | Zbl

[13] Kolesov Yu.S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Mat. sb., 184:3 (1993), 121–136 | MR | Zbl

[14] Mischenko E.F., Sadovnichii V.A., Kolesov A.Yu., Rozov N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[15] Frederickson P., Kaplan J.L., Yorke E.D., Yorke J.A., “The Liapunov dimension of strange attractors”, J. Diff. Eqns., 49:2 (1983), 185–207 | DOI | MR | Zbl

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl