Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_285_a5, author = {I. V. Volovich and V. Zh. Sakbaev}, title = {Universal boundary value problem for equations of mathematical physics}, journal = {Informatics and Automation}, pages = {64--88}, publisher = {mathdoc}, volume = {285}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a5/} }
I. V. Volovich; V. Zh. Sakbaev. Universal boundary value problem for equations of mathematical physics. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 64-88. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a5/
[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR
[2] Arnold V.I., “Malye znamenateli. I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. mat., 25:1 (1961), 21–86 | MR
[3] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR
[4] Burskii V.P., Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Nauk. dumka, Kiev, 2002
[5] Venttsel A.D., Freidlin M.I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl
[6] Vishik M.I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. Mosk. mat. o-va, 1 (1952), 187–246 | Zbl
[7] Vishik M.I., Sobolev S.L., “Obschaya postanovka kraevykh zadach dlya ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh”, DAN SSSR, 111:3 (1956), 521–523 | Zbl
[8] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[9] Vladimirov V.S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl
[10] Vladimirov V.S., “O resheniyakh $p$-adicheskikh strunnykh uravnenii”, TMF, 167:2 (2011), 163–170 | DOI | MR | Zbl
[11] Vladimirov V.S., Volovich I.V., “Lokalnye i nelokalnye toki dlya nelineinykh uravnenii”, TMF, 62:1 (1985), 3–29 | MR | Zbl
[12] Volovich I.V., Groshev O.V., Gusev N.A., Kuryanovich E.A., “O resheniyakh volnovogo uravneniya na neglobalno giperbolicheskom mnogoobrazii”, Tr. MIAN, 265, 2009, 273–287, arXiv: 0903.0741 [math-ph] | MR | Zbl
[13] Dynkin E.B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR | Zbl
[14] Krylov N.V., “O resheniyakh ellipticheskikh uravnenii vtorogo poryadka”, UMN, 21:2 (1966), 233–235 | MR
[15] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957
[16] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977 | MR
[17] Oleinik O.A., Radkevich E.V., Uravneniya s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo Mosk. un-ta, M., 2010
[18] Sobolev S.L., “Primer korrektnoi kraevoi zadachi dlya uravneniya kolebanii struny s dannymi na vsei granitse”, DAN SSSR, 109:4 (1956), 707–709 | MR | Zbl
[19] Sakbaev V.Zh., “O spektralnykh aspektakh regulyarizatsii zadachi Koshi dlya vyrozhdennogo uravneniya”, Tr. MIAN, 261, 2008, 258–267 | MR | Zbl
[20] Sakbaev V.Zh., Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii, Sovr. matematika. Fund. napr., 43, Ros. un-t druzhby narodov, M., 2012 | MR
[21] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Izd-vo Mosk. un-ta, M., 1999 | MR
[22] Khërmander L., K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1959
[23] Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, J. High Energy Phys., 2011, no. 8, 102, arXiv: 1103.0273 [hep-th] | DOI
[24] Fichera G., “On a unified theory of boundary value problems for elliptic–parabolic equations of second order”, Boundary problems in differential equations, Univ. Wisconsin Press, Madison, 1960, 97–120 | MR
[25] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, Dordrecht, 2011 | MR | Zbl
[26] Sakbaev V.Zh., Volovich I.V., A universal boundary value problem for partial differential equations, E-print, 2013, arXiv: 1312.4302 [math.AP]