A weak generalized localization criterion for multiple Walsh--Fourier series with $J_k$-lacunary sequence of rectangular partial sums
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 41-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the validity of weak generalized localization almost everywhere on an arbitrary set of positive measure $\mathfrak A$, $\mathfrak A\subset\mathbb I^N=\{x\in\mathbb R^N\colon0\leq x_j1,\, j=1,2,\dots,N\}$, $N\geq3$ (in terms of the structure and geometry of the set $\mathfrak A$), for multiple Walsh–Fourier series (summed over rectangles) of functions $f$ in the classes $L_p(\mathbb I^N)$, $p>1$ (i.e., necessary and sufficient conditions for the convergence almost everywhere of the Fourier series on some subset of positive measure $\mathfrak A_1$ of the set $\mathfrak A$, when the function expanded in a series equals zero on $\mathfrak A$), in the case when the rectangular partial sums $S_n(x;f)$ of this series have indices $n=(n_1,\dots,n_N)\in\mathbb Z^N$ in which some components are elements of (single) lacunary sequences.
@article{TRSPY_2014_285_a4,
     author = {S. K. Bloshanskaya and I. L. Bloshanskii},
     title = {A weak generalized localization criterion for multiple {Walsh--Fourier} series with $J_k$-lacunary sequence of rectangular partial sums},
     journal = {Informatics and Automation},
     pages = {41--63},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a4/}
}
TY  - JOUR
AU  - S. K. Bloshanskaya
AU  - I. L. Bloshanskii
TI  - A weak generalized localization criterion for multiple Walsh--Fourier series with $J_k$-lacunary sequence of rectangular partial sums
JO  - Informatics and Automation
PY  - 2014
SP  - 41
EP  - 63
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a4/
LA  - ru
ID  - TRSPY_2014_285_a4
ER  - 
%0 Journal Article
%A S. K. Bloshanskaya
%A I. L. Bloshanskii
%T A weak generalized localization criterion for multiple Walsh--Fourier series with $J_k$-lacunary sequence of rectangular partial sums
%J Informatics and Automation
%D 2014
%P 41-63
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a4/
%G ru
%F TRSPY_2014_285_a4
S. K. Bloshanskaya; I. L. Bloshanskii. A weak generalized localization criterion for multiple Walsh--Fourier series with $J_k$-lacunary sequence of rectangular partial sums. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 41-63. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a4/

[1] Shneider A.A., “O skhodimosti ryadov Fure po funktsiyam Uolsha”, Mat. sb., 34:3 (1954), 441–472

[2] Balashov L.A., Rubinshtein A.I., “Ryady po sisteme Uolsha i ikh obobscheniya”, Matematicheskii analiz. 1970, Itogi nauki. Matematika, VINITI, M., 1971, 147–202

[3] Konyagin S.V., “O podposledovatelnosti chastnykh summ Fure–Uolsha”, Mat. zametki, 54:4 (1993), 69–75 | MR | Zbl

[4] Konyagin S.V., “Almost everywhere convergence and divergence of Fourier series”, Proc. Int. Congr. Math., Madrid, 2006, V. 2, Eur. Math. Soc., Zürich, 2006, 1393–1403 | MR | Zbl

[5] Do Y.Q., Lacey M.T., “On the convergence of lacunary Walsh–Fourier series”, Bull. London Math. Soc., 44:2 (2012), 241–254, arXiv: 1101.2461v2 [math.CA] | DOI | MR | Zbl

[6] Antonov N.Yu., “Usloviya konechnosti mazhorant posledovatelnostei operatorov i skhodimost ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 3–20

[7] Schipp F., Wade W.R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[8] Lukomskii S.F., “O raskhodimosti pochti vsyudu kvadratnykh chastichnykh summ Fure–Uolsha integriruemykh funktsii”, Mat. zametki, 56:1 (1994), 57–62 | MR

[9] Sanadze D.K., Kheladze Sh.V., “Skhodimost kratnykh ryadov Fure–Uolsha”, Soobsch. AN Gruz. SSR, 80:2 (1975), 285–288 | MR | Zbl

[10] Sanadze D.K., Kheladze Sh.V., “O skhodimosti i raskhodimosti kratnykh ryadov Fure–Uolsha”, Tr. Tbil. mat. in-ta, 55 (1977), 93–106 | MR | Zbl

[11] Zhizhiashvili L.V., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Izd. Tbil. un-ta, Tbilisi, 2005 | MR

[12] Bloshanskaya S.K., Bloshanskii I.L., “Obobschennaya i slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge 1$”, DAN, 332:5 (1993), 549–552 | MR | Zbl

[13] Bloshanskaya S.K., Bloshanskii I.L., “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge 1$”, Tr. MIAN, 214, 1997, 83–106 | MR | Zbl

[14] Bloshanskii I.L., Lifantseva O.V., “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure, pryamougolnye chastichnye summy kotorykh rassmatrivayutsya po nekotoroi podposledovatelnosti”, Mat. zametki, 84:3 (2008), 334–347 | DOI | MR | Zbl

[15] Bloshanskii I.L., Lifantseva O.V., “Kriterii slaboi obobschennoi lokalizatsiya dlya kratnykh ryadov Fure, pryamougolnye chastichnye summy kotorykh rassmatrivayutsya po nekotoroi podposledovatelnosti”, DAN, 423:4 (2008), 439–442 | MR | Zbl

[16] Bloshanskii I.L., Lifantseva O.V., “Structural and geometric characteristics of sets of convergence and divergence of multiple Fourier series with $J_k$-lacunary sequence of rectangular partial sums”, Anal. math., 39:2 (2013), 93–121 | DOI | MR | Zbl

[17] Bloshanskii I.L., “Lokalnye usloviya gladkosti, obespechivayuschie skhodimost kratnogo trigonometricheskogo ryada Fure”, Teoriya funktsii i priblizhenii, Tr. 5-i Sarat. zimn. shk., Saratov, 1992, 150–155

[18] Bloshanskaya S.K., Bloshanskii I.L., “Local smoothness conditions on a function which guarantee convergence of double Walsh–Fourier series of this function”, Wavelet analysis and applications, Appl. Numer. Harmonic Anal., Birkhäuser, Basel, 2007, 3–11 | DOI | MR | Zbl

[19] Bloshanskaya S.K., Bloshanskii I.L., “O dostatochnykh usloviyakh skhodimosti na nekotorykh izmerimykh mnozhestvakh kratnykh ryadov Fure–Uolsha”, Sovremennye problemy analiza i prepodavaniya matematiki, Mater. Mezhdunar. nauch. konf., posv. 105-letiyu S.M. Nikolskogo, MGU, M., 2010, 13–14

[20] Kahane J.-P., “Quatre leçons sur les homéomorphismes du cercle et les séries de Fourier”, Topics in modern harmonic analysis, Proc. Semin. Torino Milano, 1982, Inst. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990 | MR

[21] Olevskii A.M., “Modifikatsiya funktsii i ryady Fure”, UMN, 40:3 (1985), 157–193 | MR

[22] Bloshanskii I.L., Wavelet analysis and applications, Appl. Numer. Harmonic Anal., Birkhäuser, Basel, 2007 | DOI | MR | Zbl

[23] Bloshanskii I.L., “Linear transformations of $\mathbb R^N$ and problems of convergence of multiple Fourier series of functions in $L_p$, $p\geq 1$”, Acta sci. math., 75 (2009), 575–603 | MR | Zbl

[24] Bloshanskii I.L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\geq 1$”, Izv. AN SSSR. Ser. mat., 49:2 (1985), 243–282 | MR

[25] Getsadze R.D., “Nepreryvnaya funktsiya s raskhodyaschimsya pochti vsyudu kratnym ryadom Fure po sisteme Uolsha–Peli”, Mat. sb., 128:2 (1985), 269–286 | MR

[26] Bloshanskaya S.K., Bloshanskii I.L., “Obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge 1$”, Mat. sb., 186:2 (1995), 21–36 | MR | Zbl