Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_285_a3, author = {I. Ya. Aref'eva and I. V. Volovich}, title = {On a~model of quantum field theory}, journal = {Informatics and Automation}, pages = {37--40}, publisher = {mathdoc}, volume = {285}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/} }
I. Ya. Aref'eva; I. V. Volovich. On a~model of quantum field theory. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 37-40. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/
[1] Unruh W.G., “Notes on black-hole evaporation”, Phys. Rev. D., 14 (1976), 870–892 | DOI
[2] Takagi S., Vacuum noise and stress induced by uniform acceleration: Hawking–Unruh effect in Rindler manifold of arbitrary dimension, Prog. Theor. Phys. Suppl., 88, Phys. Soc. Japan, Tokyo, 1986 | DOI | MR
[3] DeWitt B., The global approach to quantum field theory, Int. Ser. Monogr. Phys., 114, Oxford Univ. Press, Oxford, 2003 | MR | Zbl
[4] Crispino L.C.B., Higuchi A., Matsas G.E.A., “The Unruh effect and its applications”, Rev. Mod. Phys., 80 (2008), 787–838, arXiv: 0710.5373 | DOI | MR | Zbl
[5] Narozhny N.B., Fedotov A.M., Karnakov B.M., Mur V.D., Belinskii V.A., “Boundary conditions in the Unruh problem”, Phys. Rev. D, 65 (2002), 025004 | DOI | MR
[6] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl