On a~model of quantum field theory
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 37-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of quantum field theory in an accelerated frame of reference is considered. It was suggested by Unruh that a uniformly accelerated detector in vacuum would perceive a noise with a thermal Gibbsian distribution. However, in justifying the assertion a singular transformation was implicitly performed, and doubts were expressed by some researches. We discuss a model of quantum field theory in an accelerated frame of reference in the two-dimensional spacetime for the wave equation. By using the Mellin transform, we obtain a representation of solutions of the wave equation. The representation includes a dependence on a parameter. The Unruh field corresponds to a singular limit of the representation.
@article{TRSPY_2014_285_a3,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {On a~model of quantum field theory},
     journal = {Informatics and Automation},
     pages = {37--40},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - On a~model of quantum field theory
JO  - Informatics and Automation
PY  - 2014
SP  - 37
EP  - 40
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/
LA  - ru
ID  - TRSPY_2014_285_a3
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T On a~model of quantum field theory
%J Informatics and Automation
%D 2014
%P 37-40
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/
%G ru
%F TRSPY_2014_285_a3
I. Ya. Aref'eva; I. V. Volovich. On a~model of quantum field theory. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 37-40. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a3/

[1] Unruh W.G., “Notes on black-hole evaporation”, Phys. Rev. D., 14 (1976), 870–892 | DOI

[2] Takagi S., Vacuum noise and stress induced by uniform acceleration: Hawking–Unruh effect in Rindler manifold of arbitrary dimension, Prog. Theor. Phys. Suppl., 88, Phys. Soc. Japan, Tokyo, 1986 | DOI | MR

[3] DeWitt B., The global approach to quantum field theory, Int. Ser. Monogr. Phys., 114, Oxford Univ. Press, Oxford, 2003 | MR | Zbl

[4] Crispino L.C.B., Higuchi A., Matsas G.E.A., “The Unruh effect and its applications”, Rev. Mod. Phys., 80 (2008), 787–838, arXiv: 0710.5373 | DOI | MR | Zbl

[5] Narozhny N.B., Fedotov A.M., Karnakov B.M., Mur V.D., Belinskii V.A., “Boundary conditions in the Unruh problem”, Phys. Rev. D, 65 (2002), 025004 | DOI | MR

[6] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl