Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2014_285_a17, author = {A. S. Trushechkin}, title = {Microscopic solutions of kinetic equations and the irreversibility problem}, journal = {Informatics and Automation}, pages = {264--287}, publisher = {mathdoc}, volume = {285}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/} }
A. S. Trushechkin. Microscopic solutions of kinetic equations and the irreversibility problem. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 264-287. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/
[1] Bogolyubov N.N., “Mikroskopicheskie resheniya uravneniya Boltsmana–Enskoga v kineticheskoi teorii dlya uprugikh sharov”, TMF, 24:2 (1975), 242–247 | MR
[2] Bogolyubov N.N., Bogolyubov N.N. (ml.)., Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR
[3] Vlasov A.A., Teoriya mnogikh chastits, Gostekhizdat, M., 1950
[4] Trushechkin A.S., “Derivation of the particle dynamics from kinetic equations”, p-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 130–142, arXiv: 1201.3607 [math-ph] | DOI | MR | Zbl
[5] Trushechkin A.S., “Functional mechanics and kinetic equations”, Quantum bio-informatics V, QP-PQ: Quantum Probability and White Noise Analysis, 30, World Sci., Hackensack, NJ, 2013, 339–350 | DOI
[6] Arkeryd L., Cercignani C., “On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation”, Commun. Partial Diff. Eqns., 14:8–9 (1989), 1071–1089 | DOI | MR | Zbl
[7] Arkeryd L., Cercignani C., “Global existence in $L^1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation”, J. Stat. Phys., 59:3–4 (1990), 845–867 | DOI | MR | Zbl
[8] Shizuta Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl. Math., 36:6 (1983), 705–754 | DOI | MR | Zbl
[9] Polewczak J., “Classical solution of the nonlinear Boltzmann equation in all $R^3$: Asymptotic behavior of solutions”, J. Stat. Phys., 50:3–4 (1988), 611–632 | DOI | MR | Zbl
[10] Polewczak J., “Global existence and asymptotic behavior for the nonlinear Enskog equation”, SIAM J. Appl. Math., 49:3 (1989), 952–959 | DOI | MR | Zbl
[11] DiPerna R.J., Lions P.L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math. Ser. 2, 130:2 (1989), 321–366 | DOI | MR | Zbl
[12] Ha S.-Y., Noh S.E., “Global weak solutions and uniform $L^p$-stability of the Boltzmann–Enskog equation”, J. Diff. Eqns., 251:1 (2011), 1–25 | DOI | MR | Zbl
[13] Brilliantov N.V., Pöschel T., Kinetic theory of granular gases, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[14] Zubarev D.N., Morozov V.G., “Formulirovka granichnykh uslovii k tsepochke Bogolyubova s uchetom lokalnykh zakonov sokhraneniya”, TMF, 60:2 (1984), 270–279 | MR
[15] Zubarev D.N., Morozov V.G., Omelyan I.P., Tokarchuk M.V., “O kineticheskikh uravneniyakh dlya plotnykh gazov i zhidkostei”, TMF, 87:1 (1991), 113–129 | MR | Zbl
[16] Gerasimenko V.I., Gapyak I.V., “Hard sphere dynamics and the Enskog equation”, Kinet. Relat. Models, 5:3 (2012), 459–484, arXiv: 1107.5572 [math-ph] | DOI | MR | Zbl
[17] Petrina D.Ya., Gerasimenko V.I., Malyshev P.V., Matematicheskie osnovy klassicheskoi statisticheskoi mekhaniki, Nauk. dumka, Kiev, 1985 | MR | Zbl
[18] Cercignani C., Illner R., Pulvirenti M., The mathematical theory of dilute gases, Springer, New York, 1994 | MR
[19] Bellomo N., Lachowicz M., “On the asymptotic theory of the Boltzmann and Enskog equations: A rigorous H-theorem for the Enskog equation”, Mathematical aspects of fluid and plasma dynamics, Lect. Notes Math., 1460, Springer, Berlin, 1991, 15–30 | DOI | MR
[20] Resibois P., “$H$-theorem for the (modified) nonlinear Enskog equation”, J. Stat. Phys., 19:6 (1978), 593–609 | DOI | MR
[21] Bogolyubov N.N., Kineticheskie uravneniya i funktsii Grina v statisticheskoi mekhanike, Preprint No57, In-t fiziki AN AzSSR, Baku, 1977
[22] Rezibua P., De Lener M., Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980
[23] Van Beijeren H., Ernst M.H., “The modified Enskog equation”, Physica, 68:3 (1973), 437–456 | DOI | MR
[24] Lanford O.E. III, “Time evolution of large classical systems”, Dynamical systems, theory and applications, Lect. Notes Phys., 38, Springer, Berlin, 1975, 1–111 | DOI | MR
[25] Gallagher I., Saint-Raymond L., Texier B., From Newton to Boltzmann: the case of short-range potentials, E-print, 2012, arXiv: 1208.5753v1 [math.AP]
[26] Pulvirenti M., Saffirio C., Simonella S., On the validity of the Boltzmann equation for short range potentials, E-print, 2013, arXiv: 1301.2514 [math-ph] | MR
[27] Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991 | Zbl
[28] Bogolyubov N.N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.; L., 1946 | MR
[29] King F., BBGKY hierarchy for positive potentials, PhD Thesis, Univ. California, Berkeley, CA, 1975 | MR
[30] Villani C., “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, 1, Elsevier, Amsterdam, 2002, 71–305 | DOI | MR | Zbl
[31] Volovich I.V., “Problema neobratimosti i funktsionalnaya formulirovka klassicheskoi mekhaniki”, Vestn. Sam. gos. tekhn. un-ta. Estestvennonauch. ser., 2008, no. 8/1, 35–55 ; Volovich I.V., Time irreversibility problem and functional formulation of classical mechanics, E-print, 2009, arXiv: 0907.2445 [cond-mat.stat-mech] | MR | MR
[32] Volovich I.V., “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528, arXiv: 0910.5391v1 [quant-ph] | DOI | MR | Zbl
[33] Mikhailov A.I., “Funktsionalnaya mekhanika: evolyutsiya momentov funktsii raspredeleniya i teorema o vozvraschenii”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2011, no. 1, 124–133 | DOI
[34] Piskovskiy E.V., Volovich I.V., “On the correspondence between Newtonian and functional mechanics”, Quantum bio-informatics IV, QP-PQ: Quantum Probability and White Noise Analysis, 28, World Sci., Hackensack, NJ, 2011, 363–372 | DOI | MR
[35] Piskovskii E.V., “O klassicheskom i funktsionalnom podkhodakh k mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2011, no. 1, 134–139 | DOI
[36] Trushechkin A.S., Volovich I.V., “Functional classical mechanics and rational numbers”, p-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 361–367, arXiv: 0910.1502 [math-ph] | DOI | MR | Zbl
[37] Volovich I.V., “Uravneniya Bogolyubova i funktsionalnaya mekhanika”, TMF, 164:3 (2010), 354–362 | DOI | Zbl
[38] Vlasov A.A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR | Zbl
[39] Vedenyapin V.V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001
[40] Kozlov V.V., Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyut. issled., Moskva; Izhevsk, 2002 | MR | Zbl
[41] Kozlov V.V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva; Izhevsk, 2008
[42] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4 (2008), 93–130 | DOI | MR | Zbl