Microscopic solutions of kinetic equations and the irreversibility problem
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 264-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

As established by N. N. Bogolyubov, the Boltzmann–Enskog kinetic equation admits the so-called microscopic solutions. These solutions are generalized functions (have the form of sums of delta functions); they correspond to the trajectories of a system of a finite number of balls. However, the existence of these solutions has been established at the “physical” level of rigor. In the present paper, these solutions are assigned a rigorous meaning. It is shown that some other kinetic equations (the Enskog and Vlasov–Enskog equations) also have microscopic solutions. In this sense, one can speak of consistency of these solutions with microscopic dynamics. In addition, new kinetic equations for a gas of elastic balls are obtained through the analysis of a special limit case of the Vlasov equation.
@article{TRSPY_2014_285_a17,
     author = {A. S. Trushechkin},
     title = {Microscopic solutions of kinetic equations and the irreversibility problem},
     journal = {Informatics and Automation},
     pages = {264--287},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/}
}
TY  - JOUR
AU  - A. S. Trushechkin
TI  - Microscopic solutions of kinetic equations and the irreversibility problem
JO  - Informatics and Automation
PY  - 2014
SP  - 264
EP  - 287
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/
LA  - ru
ID  - TRSPY_2014_285_a17
ER  - 
%0 Journal Article
%A A. S. Trushechkin
%T Microscopic solutions of kinetic equations and the irreversibility problem
%J Informatics and Automation
%D 2014
%P 264-287
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/
%G ru
%F TRSPY_2014_285_a17
A. S. Trushechkin. Microscopic solutions of kinetic equations and the irreversibility problem. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 264-287. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a17/

[1] Bogolyubov N.N., “Mikroskopicheskie resheniya uravneniya Boltsmana–Enskoga v kineticheskoi teorii dlya uprugikh sharov”, TMF, 24:2 (1975), 242–247 | MR

[2] Bogolyubov N.N., Bogolyubov N.N. (ml.)., Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[3] Vlasov A.A., Teoriya mnogikh chastits, Gostekhizdat, M., 1950

[4] Trushechkin A.S., “Derivation of the particle dynamics from kinetic equations”, p-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 130–142, arXiv: 1201.3607 [math-ph] | DOI | MR | Zbl

[5] Trushechkin A.S., “Functional mechanics and kinetic equations”, Quantum bio-informatics V, QP-PQ: Quantum Probability and White Noise Analysis, 30, World Sci., Hackensack, NJ, 2013, 339–350 | DOI

[6] Arkeryd L., Cercignani C., “On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation”, Commun. Partial Diff. Eqns., 14:8–9 (1989), 1071–1089 | DOI | MR | Zbl

[7] Arkeryd L., Cercignani C., “Global existence in $L^1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation”, J. Stat. Phys., 59:3–4 (1990), 845–867 | DOI | MR | Zbl

[8] Shizuta Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl. Math., 36:6 (1983), 705–754 | DOI | MR | Zbl

[9] Polewczak J., “Classical solution of the nonlinear Boltzmann equation in all $R^3$: Asymptotic behavior of solutions”, J. Stat. Phys., 50:3–4 (1988), 611–632 | DOI | MR | Zbl

[10] Polewczak J., “Global existence and asymptotic behavior for the nonlinear Enskog equation”, SIAM J. Appl. Math., 49:3 (1989), 952–959 | DOI | MR | Zbl

[11] DiPerna R.J., Lions P.L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math. Ser. 2, 130:2 (1989), 321–366 | DOI | MR | Zbl

[12] Ha S.-Y., Noh S.E., “Global weak solutions and uniform $L^p$-stability of the Boltzmann–Enskog equation”, J. Diff. Eqns., 251:1 (2011), 1–25 | DOI | MR | Zbl

[13] Brilliantov N.V., Pöschel T., Kinetic theory of granular gases, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[14] Zubarev D.N., Morozov V.G., “Formulirovka granichnykh uslovii k tsepochke Bogolyubova s uchetom lokalnykh zakonov sokhraneniya”, TMF, 60:2 (1984), 270–279 | MR

[15] Zubarev D.N., Morozov V.G., Omelyan I.P., Tokarchuk M.V., “O kineticheskikh uravneniyakh dlya plotnykh gazov i zhidkostei”, TMF, 87:1 (1991), 113–129 | MR | Zbl

[16] Gerasimenko V.I., Gapyak I.V., “Hard sphere dynamics and the Enskog equation”, Kinet. Relat. Models, 5:3 (2012), 459–484, arXiv: 1107.5572 [math-ph] | DOI | MR | Zbl

[17] Petrina D.Ya., Gerasimenko V.I., Malyshev P.V., Matematicheskie osnovy klassicheskoi statisticheskoi mekhaniki, Nauk. dumka, Kiev, 1985 | MR | Zbl

[18] Cercignani C., Illner R., Pulvirenti M., The mathematical theory of dilute gases, Springer, New York, 1994 | MR

[19] Bellomo N., Lachowicz M., “On the asymptotic theory of the Boltzmann and Enskog equations: A rigorous H-theorem for the Enskog equation”, Mathematical aspects of fluid and plasma dynamics, Lect. Notes Math., 1460, Springer, Berlin, 1991, 15–30 | DOI | MR

[20] Resibois P., “$H$-theorem for the (modified) nonlinear Enskog equation”, J. Stat. Phys., 19:6 (1978), 593–609 | DOI | MR

[21] Bogolyubov N.N., Kineticheskie uravneniya i funktsii Grina v statisticheskoi mekhanike, Preprint No57, In-t fiziki AN AzSSR, Baku, 1977

[22] Rezibua P., De Lener M., Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980

[23] Van Beijeren H., Ernst M.H., “The modified Enskog equation”, Physica, 68:3 (1973), 437–456 | DOI | MR

[24] Lanford O.E. III, “Time evolution of large classical systems”, Dynamical systems, theory and applications, Lect. Notes Phys., 38, Springer, Berlin, 1975, 1–111 | DOI | MR

[25] Gallagher I., Saint-Raymond L., Texier B., From Newton to Boltzmann: the case of short-range potentials, E-print, 2012, arXiv: 1208.5753v1 [math.AP]

[26] Pulvirenti M., Saffirio C., Simonella S., On the validity of the Boltzmann equation for short range potentials, E-print, 2013, arXiv: 1301.2514 [math-ph] | MR

[27] Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991 | Zbl

[28] Bogolyubov N.N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.; L., 1946 | MR

[29] King F., BBGKY hierarchy for positive potentials, PhD Thesis, Univ. California, Berkeley, CA, 1975 | MR

[30] Villani C., “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, 1, Elsevier, Amsterdam, 2002, 71–305 | DOI | MR | Zbl

[31] Volovich I.V., “Problema neobratimosti i funktsionalnaya formulirovka klassicheskoi mekhaniki”, Vestn. Sam. gos. tekhn. un-ta. Estestvennonauch. ser., 2008, no. 8/1, 35–55 ; Volovich I.V., Time irreversibility problem and functional formulation of classical mechanics, E-print, 2009, arXiv: 0907.2445 [cond-mat.stat-mech] | MR | MR

[32] Volovich I.V., “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528, arXiv: 0910.5391v1 [quant-ph] | DOI | MR | Zbl

[33] Mikhailov A.I., “Funktsionalnaya mekhanika: evolyutsiya momentov funktsii raspredeleniya i teorema o vozvraschenii”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2011, no. 1, 124–133 | DOI

[34] Piskovskiy E.V., Volovich I.V., “On the correspondence between Newtonian and functional mechanics”, Quantum bio-informatics IV, QP-PQ: Quantum Probability and White Noise Analysis, 28, World Sci., Hackensack, NJ, 2011, 363–372 | DOI | MR

[35] Piskovskii E.V., “O klassicheskom i funktsionalnom podkhodakh k mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2011, no. 1, 134–139 | DOI

[36] Trushechkin A.S., Volovich I.V., “Functional classical mechanics and rational numbers”, p-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 361–367, arXiv: 0910.1502 [math-ph] | DOI | MR | Zbl

[37] Volovich I.V., “Uravneniya Bogolyubova i funktsionalnaya mekhanika”, TMF, 164:3 (2010), 354–362 | DOI | Zbl

[38] Vlasov A.A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR | Zbl

[39] Vedenyapin V.V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[40] Kozlov V.V., Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyut. issled., Moskva; Izhevsk, 2002 | MR | Zbl

[41] Kozlov V.V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva; Izhevsk, 2008

[42] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4 (2008), 93–130 | DOI | MR | Zbl