Coherent control of a~qubit is trap-free
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 244-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a strong interest in optimal manipulating of quantum systems by external controls. Traps are controls which are optimal only locally but not globally. If they exist, they can be serious obstacles to the search of globally optimal controls in numerical and laboratory experiments, and for this reason the analysis of traps attracts considerable attention. In this paper we prove that for a wide range of control problems for two-level quantum systems all locally optimal controls are also globally optimal. Hence we conclude that two-level systems in general are trap-free. In particular, manipulating qubits – two-level quantum systems forming a basic building block for quantum computation – is free of traps for fundamental problems such as the state preparation and gate generation.
@article{TRSPY_2014_285_a15,
     author = {A. N. Pechen and N. B. Il'in},
     title = {Coherent control of a~qubit is trap-free},
     journal = {Informatics and Automation},
     pages = {244--252},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a15/}
}
TY  - JOUR
AU  - A. N. Pechen
AU  - N. B. Il'in
TI  - Coherent control of a~qubit is trap-free
JO  - Informatics and Automation
PY  - 2014
SP  - 244
EP  - 252
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a15/
LA  - ru
ID  - TRSPY_2014_285_a15
ER  - 
%0 Journal Article
%A A. N. Pechen
%A N. B. Il'in
%T Coherent control of a~qubit is trap-free
%J Informatics and Automation
%D 2014
%P 244-252
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a15/
%G ru
%F TRSPY_2014_285_a15
A. N. Pechen; N. B. Il'in. Coherent control of a~qubit is trap-free. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 244-252. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a15/

[1] D'Alessandro D. Introduction to quantum control and dynamics. Boca Raton, FL: Chapman Hall, 2008. | MR

[2] Shapiro M., Brumer P., Principles of the quantum control of molecular processes, J. Wiley Sons, Hoboken, NJ, 2003

[3] Upravlenie molekulyarnymi i kvantovymi sistemami, Pod red. A.L. Fradkova, O.A. Yakubovskogo, In-t kompyut. issled., Moskva; Izhevsk, 2003

[4] Tannor D.J., Introduction to quantum mechanics: A time-dependent perspective, Univ. Sci. Books, Sausalito, CA, 2007

[5] Letokhov V.S., Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007

[6] Brif C., Chakrabarti R., Rabitz H., “Control of quantum phenomena”, Advances in chemical physics, 148, eds. S.A. Rice, A.R. Dinner, J. Wiley Sons, New York, 2012, 1–76.

[7] The Nobel Prize in Physics 2012, Press release, R. Swedish Acad. Sci., Stockholm, Oct. 9, 2012.

[8] Gordon G., Kurizki G., Lidar D.A., “Optimal dynamical decoherence control of a qubit”, Phys. Rev. Lett., 101:1 (2008), 010403 | DOI

[9] Shahmoon E., Levit S., Ozeri R., “Qubit coherent control and entanglement with squeezed light fields”, Phys. Rev. A, 80:3 (2009), 033803 | DOI

[10] De Greve K., McMahon P.L., Press D., et al., “Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit”, Nature Phys., 7:11 (2011), 872–878 | DOI

[11] Ospelkaus C., Warring U., Colombe Y., et al., “Microwave quantum logic gates for trapped ions”, Nature, 476:7359 (2011), 181–184 | DOI

[12] Langford N.K., Ramelow S., Prevedel R., et al., “Efficient quantum computing using coherent photon conversion”, Nature, 478:7369 (2011), 360–363 | DOI

[13] Blatt R., Roos C.F., “Quantum simulations with trapped ions”, Nature Phys., 8:4 (2012), 277–284 | DOI | MR

[14] Bocharov A., Svore K.M., “Resource-optimal single-qubit quantum circuits”, Phys. Rev. Lett., 109:19 (2012), 190501 | DOI

[15] de Fouquieres P., “Implementing quantum gates by optimal control with doubly exponential convergence”, Phys. Rev. Lett., 108:11 (2012), 110504 | DOI

[16] Schulte-Herbrüggen T., Marx R., Fahmy A., et al., “Control aspects of quantum computing using pure and mixed states”, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 370 (2012), 4651–4670 | DOI | MR

[17] Viola L., Knill E., Lloyd S., “Dynamical decoupling of open quantum systems”, Phys. Rev. Lett., 82 (1999), 2417–2421 | DOI | MR | Zbl

[18] Souza A.M., Álvarez G.A., Suter D., “Experimental protection of quantum gates against decoherence and control errors”, Phys. Rev. A, 86:5 (2012), 050301 | DOI

[19] de Fouquieres P., Schirmer S.G., Glaser S.J., Kuprov I., “Second order gradient ascent pulse engineering”, J. Magn. Reson., 212:2 (2011), 412–417 | DOI

[20] Maday Y., Turinici G., “New formulations of monotonically convergent quantum control algorithms”, J. Chem. Phys., 118 (2003), 8191–8196 | DOI

[21] Schulte-Herbrüggen T., Glaser S.J., Dirr G., Helmke U., “Gradient flows for optimization in quantum information and quantum dynamics: Foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667 | DOI | MR | Zbl

[22] Rabitz H.A., Hsieh M.M., Rosenthal C.M., “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001 | DOI

[23] Hsieh M., Wu R., Rabitz H., Lidar D., “Optimal control landscape for the generation of unitary transformations with constrained dynamics”, Phys. Rev. A, 81:6 (2010), 062352 | DOI

[24] Pechen A., Rabitz H., “Unified analysis of terminal-time control in classical and quantum systems”, Europhys. Lett., 91:6 (2010), 60005 | DOI

[25] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[26] Moore K.W., Rabitz H., “Exploring quantum control landscapes: Topology, features, and optimization scaling”, Phys. Rev. A, 84:1 (2011), 012109 | DOI

[27] Pechen A.N., Tannor D.J., “Pechen and Tannor reply”, Phys. Rev. Lett., 108:19 (2012), 198902 | DOI

[28] Pechen A., Il'in N., “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117 | DOI

[29] de Fouquieres P., Schirmer S.G., “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl

[30] Pechen A.N., Tannor D.J., “Quantum control landscape for a $\Lambda $-atom in the vicinity of second-order traps”, Isr. J. Chem., 52:5 (2012), 467–472 | DOI

[31] Pechen A.N., Tannor D.J., “Control of quantum transmission is trap free”, Can. J. Chem., 92:2 (2014), 157–159 | DOI

[32] Wu R., Pechen A., Rabitz H., Hsieh M., Tsou B., “Control landscapes for observable preparation with open quantum systems”, J. Math. Phys., 49:2 (2008), 022108 | DOI | MR | Zbl