Formulation of quantum mechanics with dynamical time
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 154-165

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quantum mechanics for which the system time is one of generalized coordinates. The generalized Hamiltonian has an unbounded spectrum, which allows us to introduce a Hermitian time operator. In the proposed formulation of quantum mechanics, a system time and observer's time are introduced. The Schrödinger equation in the system time either does not hold or holds only approximately. The wave function is assumed to be square integrable with respect to all coordinates, including the system time. In some limit, this formalism reproduces standard quantum mechanics and the corresponding measurement theory.
@article{TRSPY_2014_285_a10,
     author = {M. G. Ivanov},
     title = {Formulation of quantum mechanics with dynamical time},
     journal = {Informatics and Automation},
     pages = {154--165},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/}
}
TY  - JOUR
AU  - M. G. Ivanov
TI  - Formulation of quantum mechanics with dynamical time
JO  - Informatics and Automation
PY  - 2014
SP  - 154
EP  - 165
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/
LA  - ru
ID  - TRSPY_2014_285_a10
ER  - 
%0 Journal Article
%A M. G. Ivanov
%T Formulation of quantum mechanics with dynamical time
%J Informatics and Automation
%D 2014
%P 154-165
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/
%G ru
%F TRSPY_2014_285_a10
M. G. Ivanov. Formulation of quantum mechanics with dynamical time. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 154-165. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/