Formulation of quantum mechanics with dynamical time
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 154-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quantum mechanics for which the system time is one of generalized coordinates. The generalized Hamiltonian has an unbounded spectrum, which allows us to introduce a Hermitian time operator. In the proposed formulation of quantum mechanics, a system time and observer's time are introduced. The Schrödinger equation in the system time either does not hold or holds only approximately. The wave function is assumed to be square integrable with respect to all coordinates, including the system time. In some limit, this formalism reproduces standard quantum mechanics and the corresponding measurement theory.
@article{TRSPY_2014_285_a10,
     author = {M. G. Ivanov},
     title = {Formulation of quantum mechanics with dynamical time},
     journal = {Informatics and Automation},
     pages = {154--165},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/}
}
TY  - JOUR
AU  - M. G. Ivanov
TI  - Formulation of quantum mechanics with dynamical time
JO  - Informatics and Automation
PY  - 2014
SP  - 154
EP  - 165
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/
LA  - ru
ID  - TRSPY_2014_285_a10
ER  - 
%0 Journal Article
%A M. G. Ivanov
%T Formulation of quantum mechanics with dynamical time
%J Informatics and Automation
%D 2014
%P 154-165
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/
%G ru
%F TRSPY_2014_285_a10
M. G. Ivanov. Formulation of quantum mechanics with dynamical time. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 154-165. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a10/

[1] Dirac P.A.M., “Homogeneous variables in classical dynamics”, Math. Proc. Cambridge Philos. Soc., 29 (1933), 389–400 | DOI

[2] Dirac P.A.M., “Generalized Hamiltonian dynamics”, Can. J. Math., 2 (1950), 129–148 | DOI | MR | Zbl

[3] Dirac P.A.M., “Generalized Hamiltonian dynamics”, Proc. R. Soc. London A, 246 (1958), 326–332 | DOI | MR | Zbl

[4] Dirak P.A.M., Lektsii po kvantovoi mekhanike, Izhevsk. respubl. tipogr., Izhevsk, 1998

[5] Arnowitt R., Deser S., Misner C.W., “The dynamics of general relativity”, Gravitation: An introduction to current research, Ch. 7, ed. L. Witten, J. Wiley Sons, New York, 1962, 227–265 | MR

[6] Gitman D.M., Tyutin I.V., Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl

[7] Ivanov M.G., “Krivizna fazovogo prostranstva”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2013, no. 1, 361–368 | DOI

[8] Volovich I.V., “Problema neobratimosti i funktsionalnaya formulirovka klassicheskoi mekhaniki”, Vestn. Sam. gos. tekhn. un-ta. Estestvennonauch. ser., 2008, no. 8/1, 35–55 ; Volovich I.V., Time irreversibility problem and functional formulation of classical mechanics, E-print, 2009, arXiv: 0907.2445 [cond-mat.stat-mech] | MR | MR

[9] Volovich I.V., “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528, arXiv: 0910.5391v1 [quant-ph] | DOI | MR | Zbl

[10] Ivanov M.G., Kak ponimat kvantovuyu mekhaniku, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva; Izhevsk, 2012

[11] Pauli W., Die allgemeinen Prinzipien der Wellenmechanik, Handbuch der Physik, 24, Tl. 1, Hrsg. v. H. Geiger, K. Scheel, J. Springer, Berlin, 1933, 83–272; Паули В., Общие принципы волновой механики, ОГИЗ Гостехиздат, М.; Л., 1947, 103; Pauli W., “Die allgemeinen Prinzipien der Wellenmechanik”, Prinzipien der Quantentheorie I, Handbuch der Physik, 5, Tl. 1, Hrsg. v. S. Flügge, Springer, Berlin, 1958, 1–168 ; Pauli W., General principles of quantum mechanics, Springer, Berlin, 1980 | DOI | MR

[12] Olkhovskii V.S., “O vremeni kak kvantovoi nablyudaemoi, kanonicheski sopryazhennoi energii”, UFN, 181:8 (2011), 859–866 | DOI

[13] Kozlov V.V., “Summiruemye s kvadratom resheniya uravneniya Kleina–Gordona na prostranstve de Sittera”, UMN, 42:4 (1987), 171

[14] Volovich I.V., Kozlov V.V., “O summiruemykh s kvadratom resheniyakh uravneniya Kleina–Gordona na mnogoobraziyakh”, DAN, 408:3 (2006), 317–320 | MR | Zbl

[15] Kozlov V.V., Volovich I.V., Mass spectrum, actons and cosmological landscape, E-print, 2006, arXiv: hep-th/0612135

[16] Kozlov V.V., Volovich I.V., “Finite action Klein–Gordon solutions on Lorentzian manifolds”, Int. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357, arXiv: gr-qc/0603111 | DOI | MR | Zbl

[17] Sakharov A.D., “Kosmologicheskie perekhody s izmeneniem signatury metriki”, ZhETF, 87:2 (1984), 375–383

[18] Arefeva I.Ya., Volovich I.V., “Supersimmetriya: teoriya Kalutsy–Kleina, anomalii, superstruny”, UFN, 146:4 (1985), 655–681 | DOI | MR

[19] Arefeva I.Ya., Volovich I.V., Dragovich B.G., “Spontannaya reduktsiya v mnogomernykh ($D=10,11$) teoriyakh supergravitatsii s proizvolnoi signaturoi”, TMF, 70:3 (1987), 422–431 | MR

[20] Khalfin L.A., “K teorii raspada kvazistatsionarnogo sostoyaniya”, DAN SSSR, 115:2 (1957), 277–280

[21] Khalfin L.A., “K teorii raspada kvazistatsionarnogo sostoyaniya”, ZhETF, 33:6 (1958), 1371–1382 | Zbl

[22] Khalfin L.A., Kvantovaya teoriya raspada fizicheskikh sistem, Avtoref. dis. ... kand. fiz.-mat. nauk, FIAN SSSR, M., 1960

[23] fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[24] Everett H., ““Relative state” formulation of quantum mechanics”, Rev. Mod. Phys., 29 (1957), 454–462 | DOI | MR