Ultrametric random walk and dynamics of protein molecules
Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 9-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a brief survey of applications of the $p$-adic equation of ultrametric random walk to the description of conformational dynamics of protein molecules. Two main experiments are considered that determine the properties of the fluctuation dynamic mobility of protein molecules from $300$ to $4$ K: the studies of the kinetics of CO binding to myoglobin and spectral diffusion in proteins. It is shown that an ultrametric description allows one to build a unified picture of the conformational mobility of a protein molecule in the whole range of the indicated temperatures and realize the fact that it varies in a self-similar way. This feature of protein molecules, which has remained hidden to date, significantly expands the idea of the structure of nanoscale systems related to the family of molecular machines.
@article{TRSPY_2014_285_a1,
     author = {V. A. Avetisov and A. Kh. Bikulov and A. P. Zubarev},
     title = {Ultrametric random walk and dynamics of protein molecules},
     journal = {Informatics and Automation},
     pages = {9--32},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a1/}
}
TY  - JOUR
AU  - V. A. Avetisov
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
TI  - Ultrametric random walk and dynamics of protein molecules
JO  - Informatics and Automation
PY  - 2014
SP  - 9
EP  - 32
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a1/
LA  - ru
ID  - TRSPY_2014_285_a1
ER  - 
%0 Journal Article
%A V. A. Avetisov
%A A. Kh. Bikulov
%A A. P. Zubarev
%T Ultrametric random walk and dynamics of protein molecules
%J Informatics and Automation
%D 2014
%P 9-32
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a1/
%G ru
%F TRSPY_2014_285_a1
V. A. Avetisov; A. Kh. Bikulov; A. P. Zubarev. Ultrametric random walk and dynamics of protein molecules. Informatics and Automation, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 9-32. http://geodesic.mathdoc.fr/item/TRSPY_2014_285_a1/

[1] Parisi G., “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett., 43 (1979), 1754–1756 | DOI | MR

[2] Rammal R., Toulouse G., Virasoro M.A., “Ultrametricity for physicists”, Rev. Mod. Phys., 58:3 (1986), 765–788 | DOI | MR

[3] Dyson F.J., “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Commun. Math. Phys., 12 (1969), 91–107 | DOI | MR

[4] Frauenfelder H., “The connection between low-temperature kinetics and life”, Protein structure: Molecular and electronic reactivity, eds. R. Austin et al., Springer, New York, 245–261

[5] Frauenfelder H., “Complexity in proteins”, Nat. Struct. Biol., 2 (1995), 821–823 | DOI

[6] Goldanskii V.I., Krupyanskii Yu.F., “Dinamika biopolimerov i stekloobraznaya model belkov i DNK”, UFN, 143 (1984), 329–331 | DOI

[7] Blyumenfeld L.A., Problemy biologicheskoi fiziki, Nauka, M., 1977

[8] Blyumenfeld L.A., Grosberg A.Yu., “Paradoks Gibbsa i ponyatie konstruktsii sistemy v termodinamike i statisticheskoi fizike”, Biofizika, 40:3 (1995), 660–667

[9] Togashi Y., Mikhailov A.S., “Nonlinear relaxation dynamics in elastic networks and design principles of molecular machines”, Proc. Natl. Acad. Sci. USA, 104 (2007), 8697–8702 | DOI

[10] Becker O.M., Karplus M., “The topology of multidimensional protein energy surfaces: theory and application to peptide structure and kinetics”, J. Chem. Phys., 106 (1997), 1495–1517 | DOI

[11] Wales D.J., Energy landscapes: With applications to clusters, biomolecules and glasses, Cambrige Univ. Press, Cambridge, 2003

[12] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[13] Khrennikov A.Yu., Shelkovich V.M., Sovremennyi $p$-adicheskii analiz i matematicheskaya fizika: Teoriya i prilozheniya, Fizmatlit, M., 2012 | Zbl

[14] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., “On $p$-adic mathematical physics”, p-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[15] Feller W., An introduction to probability theory and its applications, V. 1, 2nd ed., J. Wiley Sons, New York, 1968 ; V. 2, 1971 | Zbl

[16] Shiryaev A.N., Veroyatnost, 2-e izd., Nauka, M., 1989 | MR

[17] Van Kampen N.G., Stokhasticheskie protsessy v fizike i khimii, Vyssh. shk., M., 1990 | Zbl

[18] Gardiner C.W., Handbook of stochastic methods: For physics, chemistry and the natural sciences, Springer, Berlin, 1997 | MR

[19] Avetisov V.A., Bikulov A.H., Kozyrev S.V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. Gen., 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[20] Avetisov V.A., Bikulov A.H., Kozyrev S.V., Osipov V.A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. Gen., 35:2 (2002), 177–189 | DOI | MR | Zbl

[21] Avetisov V.A., Bikulov A.Kh., Zubarev A.P., “First passage time distribution and number of returns for ultrametric random walks”, J. Phys. A: Math. Theor., 42:8 (2009), 085003 | DOI | MR | Zbl

[22] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1985

[23] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[24] Avetisov V.A., Bikulov A.Kh., Osipov V.A., “$p$-Adicheskie modeli ultrametricheskoi diffuzii v konformatsionnoi dinamike makromolekul”, Tr. MIAN, 245, 2004, 55–64 | MR | Zbl

[25] Avetisov V.A., Bikulov A.Kh., Osipov V.A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. Gen., 36:15 (2003), 4239–4246 | DOI | MR | Zbl

[26] Ogielski A.T., Stein D.L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55 (1985), 1634–1637 | DOI | MR

[27] Parisi G., Sourlas N., “$p$-Adic numbers and replica symmetry breaking”, Eur. Phys. J. B, 14 (2000), 535–542 | DOI | MR

[28] Dolgopolov M.V., Zubarev A.P., “Some aspects of $m$-adic analysis and its applications to $m$-adic stochastic processes”, p-Adic Numbers Ultrametric Anal. Appl., 3:1 (2011), 39–51 | DOI | MR | Zbl

[29] Baier J., Richter M.F., Cogdell R.J., Oellerich S., Köhler J., “Do proteins at low temperature behave as glasses? A single-molecule study”, J. Phys. Chem. B., 111:5 (2007), 1135–1138 | DOI

[30] Leeson D.Th., Wiersma D.A., “Looking into the energy landscape of myoglobin”, Nat. Struct. Biol., 2 (1995), 848–851 | DOI

[31] Ponkratov V.V., Friedrich J., Vanderkooi J.M., Burin A.L., Berlin Yu.A., “Physics of proteins at low temperature”, J. Low Temp. Phys., 137 (2004), 289–317 | DOI

[32] Schlichter J., Friedrich J., Herenyi L., Fidy J., “Protein dynamics at low temperatures”, J. Chem. Phys., 112 (2000), 3045–3050 | DOI

[33] Avetisov V., Bikulov A., “Protein ultrametricity and spectral diffusion in deeply frozen proteins”, Biophys. Rev. Lett., 3:3 (2008), 387–396 | DOI

[34] Ansary A., Berendzen J., Bowne S.F., et al., “Protein states and proteinquakes”, Proc. Natl. Acad. Sci. USA., 82 (1985), 5000–5004 | DOI

[35] Steinbach P.J., Ansary A., Berendzen J., et al., “Ligand binding to heme proteins: connection between dynamics and function”, Biochemistry., 30 (1991), 3988–4001 | DOI

[36] Zharikov A.A., Fischer S.F., “Scaling law for the non-exponential ligand rebinding of CO in myoglobin”, Chem. Phys. Lett., 263 (1996), 749–758 | DOI

[37] Zharikov A.A., Fischer S.F., “Nonexponential ligand rebinding of CO and O$_2$ in myoglobin controlled by fluctuations of the protein”, Chem. Phys. Lett., 249 (1996), 459–469 | DOI

[38] Bikulov A.Kh., “On solution properties of some types of $p$-adic kinetic equations of form reaction–diffusion”, p-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 187–206 | DOI | MR | Zbl

[39] Avetisov V.A., Ivanov V.A., Meshkov D.A., Nechaev S.K., “Fraktalnaya globula kak molekulyarnaya mashina”, Pisma v ZhETF., 98:4 (2013), 270–274