Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.
@article{TRSPY_2013_283_a12,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Uniform stability of the inverse {Sturm--Liouville} problem with respect to the spectral function in the scale of {Sobolev} spaces},
     journal = {Informatics and Automation},
     pages = {188--203},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
JO  - Informatics and Automation
PY  - 2013
SP  - 188
EP  - 203
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/
LA  - ru
ID  - TRSPY_2013_283_a12
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
%J Informatics and Automation
%D 2013
%P 188-203
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/
%G ru
%F TRSPY_2013_283_a12
A. M. Savchuk; A. A. Shkalikov. Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/

[1] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta math., 78 (1946), 1–96 | DOI | MR | Zbl

[2] Freiling G., Yurko V., Inverse Sturm–Liouville problems and their applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[3] Gelfand I.M., Levitan B.M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl

[4] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[5] Griniv R.O., “Ravnomerno ogranichennye semeistva bazisov Rissa iz eksponent, sinusov i kosinusov”, Mat. zametki, 87:4 (2010), 542–553 | DOI | MR

[6] Hryniv R.O., “Analyticity and uniform stability in the inverse spectral problem for impedance Sturm–Liouville operators”, Carpathian Math. Publ., 2:1 (2010), 35–58

[7] Hryniv R.O., “Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem”, Inverse Probl., 27:6 (2011), 065011 | DOI | MR | Zbl

[8] Hryniv R.O., Mykytyuk Ya.V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Probl., 19:3 (2003), 665–684 | DOI | MR | Zbl

[9] Hryniv R.O., Mykytyuk Ya.V., “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7 (2004), 119–149 | DOI | MR | Zbl

[10] Hryniv R.O., Mykytyuk Ya.V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV: Potentials in the Sobolev space scale”, Proc. Edinburgh Math. Soc. Ser. 2, 49:2 (2006), 309–329 | DOI | MR | Zbl

[11] Levitan B.M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[12] Marchenko V.A., “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 72:3 (1950), 457–460 | MR | Zbl

[13] Pöschel J., Trubowitz E., Inverse spectral theory, Acad. Press, Boston, 1987 | MR | Zbl

[14] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[15] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. mat. o-va, 64, 2003, 159–219 | MR

[16] Savchuk A.M., Shkalikov A.A., “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl

[17] Savchuk A.M., Shkalikov A.A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | DOI | MR | Zbl

[18] Savchuk A.M., Shkalikov A.A., “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Tr. MIAN, 260, 2008, 227–247 | MR | Zbl

[19] Savchuk A.M., Shkalikov A.A., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl

[20] Savchuk A.M., Shkalikov A.A., Svoistva otobrazheniya, svyazannogo s vosstanovleniem operatora Shturma–Liuvillya po spektralnoi funktsii. Ravnomernaya ustoichivost v shkale sobolevskikh prostranstv, E-print, 2010, arXiv: 1010.5344v1 | MR

[21] Savchuk A.M., Shkalikov A.A., “Ob interpolyatsii analiticheskikh otobrazhenii”, Mat. zametki, 94:4 (2013), 578–581 | DOI | Zbl