Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.
@article{TRSPY_2013_283_a12,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Uniform stability of the inverse {Sturm--Liouville} problem with respect to the spectral function in the scale of {Sobolev} spaces},
     journal = {Informatics and Automation},
     pages = {188--203},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
JO  - Informatics and Automation
PY  - 2013
SP  - 188
EP  - 203
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/
LA  - ru
ID  - TRSPY_2013_283_a12
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
%J Informatics and Automation
%D 2013
%P 188-203
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/
%G ru
%F TRSPY_2013_283_a12
A. M. Savchuk; A. A. Shkalikov. Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a12/