Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_283_a1, author = {Lorenzo D'Ambrosio and Enzo Mitidieri}, title = {Entire solutions of quasilinear elliptic systems on {Carnot} groups}, journal = {Informatics and Automation}, pages = {9--24}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a1/} }
Lorenzo D'Ambrosio; Enzo Mitidieri. Entire solutions of quasilinear elliptic systems on Carnot groups. Informatics and Automation, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 9-24. http://geodesic.mathdoc.fr/item/TRSPY_2013_283_a1/
[1] Azizieh C., Clément Ph., Mitidieri E., “Existence and a priori estimates for positive solutions of $p$-Laplace systems”, J. Diff. Eqns., 184 (2002), 422–442 | DOI | MR | Zbl
[2] Bidaut-Véron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl
[3] Birindelli I., Capuzzo Dolcetta I., Cutrì A., “Liouville theorems for semilinear equations on the Heisenberg group”, Ann. Inst. Henri Poincarè. Anal. Non Linéaire, 14 (1997), 295–308 | DOI | MR | Zbl
[4] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., Springer, New York, 2007 | MR | Zbl
[5] Capogna L., Danielli D., Garofalo N., “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations”, Commun. Partial Diff. Eqns., 18 (1993), 1765–1794 | DOI | MR | Zbl
[6] Capuzzo Dolcetta I., Cutrì A., “On the Liouville property for sub-Laplacians”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 25 (1997), 239–256 | MR | Zbl
[7] Proc. Steklov Inst. Math., 260 (2008), 90–111 | DOI | MR | Zbl
[8] Clément Ph., Fleckinger J., Mitidieri E., de Thélin F., “Existence of positive solutions for a nonvariational quasilinear elliptic system”, J. Diff. Eqns., 166 (2000), 455–477 | DOI | MR | Zbl
[9] D'Ambrosio L., “Liouville theorems for anisotropic quasilinear inequalities”, Nonlinear Anal., Theory Methods Appl., 70 (2009), 2855–2869 | DOI | MR | Zbl
[10] D'Ambrosio L., “A new critical curve for a class of quasilinear elliptic systems”, Nonlinear Anal., Theory Methods Appl., 78 (2013), 62–78 | DOI | MR | Zbl
[11] D'Ambrosio L., Farina A., Mitidieri E., Serrin J., “Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities”, Nonlinear Anal., Theory Methods Appl., 90 (2013), 135–158 | DOI | MR | Zbl
[12] D'Ambrosio L., Mitidieri E., “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224 (2010), 967–1020 | DOI | MR | Zbl
[13] D'Ambrosio L., Mitidieri E., “Nonnegative solutions of some quasilinear elliptic inequalities and applications”, Sb. Math., 201 (2010), 855–871 | DOI | DOI | MR | Zbl
[14] D'Ambrosio L., Mitidieri E., “A priori estimates and reduction principles for quasilinear elliptic problems and applications”, Adv. Diff. Eqns., 17 (2012), 935–1000 | MR | Zbl
[15] D'Ambrosio L., Mitidieri E., “Liouville theorems for elliptic systems and applications”, J. Math. Anal. Appl., 2013 | DOI
[16] Folland G.B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13 (1975), 161–207 | DOI | MR | Zbl
[17] Folland G.B., Stein E.M., Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl
[18] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Commun. Pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl
[19] Gidas B., Spruck J., “A priori bounds for positive solutions of nonlinear elliptic equations”, Commun. Partial Diff. Eqns., 6 (1981), 883–901 | DOI | MR | Zbl
[20] Mitidieri E., “Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb R^N$”, Diff. Integral Eqns., 9 (1996), 465–479 | MR | Zbl
[21] Mitidieri E., Pohozaev S.I., “Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb R^N$”, Dokl. Math., 59:3 (1999), 351–355 | MR | MR | Zbl
[22] Mitidieri E., Pohozaev S.I., A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234, MAIK Nauka/Interperiodica; Pleiades Publ., Moscow, 2001 | MR | Zbl
[23] Serrin J., “Local behavior of solutions of quasi-linear equations”, Acta math., 111 (1964), 247–302 | DOI | MR | Zbl
[24] Serrin J., Zou H., “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta math., 189 (2002), 79–142 | DOI | MR | Zbl
[25] Trudinger N.S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Commun. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl
[26] Trudinger N.S., Wang X.-J., “On the weak continuity of elliptic operators and applications to potential theory”, Amer. J. Math., 124 (2002), 369–410 | DOI | MR | Zbl
[27] Zou H.H., “A priori estimates and existence for quasi-linear elliptic equations”, Calc. Var. Partial Diff. Eqns., 33 (2008), 417–437 | DOI | MR | Zbl