Snakes and perturbed random walks
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some properties of random walks perturbed at extrema, which are generalizations of the walks considered, e.g., by Davis (1999) and Tóth (1996). This process can also be viewed as a version of an excited random walk, recently studied by many authors. We obtain several properties related to the range of the process with infinite memory and prove the strong law, the central limit theorem, and the criterion for the recurrence of the perturbed walk with finite memory. We also state some open problems. Our methods are predominantly combinatorial and do not involve complicated analytic techniques.
@article{TRSPY_2013_282_a3,
     author = {Gopal Basak and Stanislav Volkov},
     title = {Snakes and perturbed random walks},
     journal = {Informatics and Automation},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/}
}
TY  - JOUR
AU  - Gopal Basak
AU  - Stanislav Volkov
TI  - Snakes and perturbed random walks
JO  - Informatics and Automation
PY  - 2013
SP  - 42
EP  - 51
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/
LA  - en
ID  - TRSPY_2013_282_a3
ER  - 
%0 Journal Article
%A Gopal Basak
%A Stanislav Volkov
%T Snakes and perturbed random walks
%J Informatics and Automation
%D 2013
%P 42-51
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/
%G en
%F TRSPY_2013_282_a3
Gopal Basak; Stanislav Volkov. Snakes and perturbed random walks. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 42-51. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/

[1] Basdevant A.-L., Singh A., “Rate of growth of a transient cookie random walk”, Electron. J. Probab., 13 (2008), 811–851 | MR | Zbl

[2] Basdevant A.-L., Singh A., “On the speed of a cookie random walk”, Probab. Theory Relat. Fields, 141 (2008), 625–645 | DOI | MR | Zbl

[3] Benjamini I., Wilson D.B., “Excited random walk”, Electron. Commun. Probab., 8 (2003), 86–92 | DOI | MR | Zbl

[4] Bhattacharya R.N., Waymire E.C., Stochastic processes with applications, J. Wiley Sons, New York, 1990 | MR

[5] Davis B., “Reinforced random walk”, Probab. Theory Relat. Fields, 84 (1990), 203–229 | DOI | MR | Zbl

[6] Davis B., “Weak limits of perturbed random walks and the equation $Y_t=B_t+\alpha \sup \{Y_s\colon s\leq t\} +\beta \inf \{Y_s\colon s\leq t\}$”, Ann. Probab., 24 (1996), 2007–2023 | DOI | MR | Zbl

[7] Davis B., “Brownian motion and random walk perturbed at extrema”, Probab. Theory Relat. Fields, 113 (1999), 501–518 | DOI | MR | Zbl

[8] Durrett R., Probability: Theory and examples, 2nd ed., Duxbury Press, Belmont, CA, 1996 | MR

[9] Feller W., An introduction to probability theory and its applications, V. 2, J. Wiley Sons, New York, 1971 | MR | Zbl

[10] Kosygina E., Zerner M.P.W., “Positively and negatively excited random walks on integers, with branching processes”, Electron. J. Probab., 13 (2008), 1952–1979 | DOI | MR | Zbl

[11] Snake video game, eds. L.M. Surhone, M.T. Tennoe, S.F. Henssonow, Betascript Publ., Beau-Bassin, 2010

[12] Tóth B., “Generalized Ray–Knight theory and limit theorems for self-interacting random walks on $\mathbb Z^1$”, Ann. Probab., 24 (1996), 1324–1367 | DOI | MR | Zbl

[13] Volkov S., “Excited random walk on trees”, Electron. J. Probab., 8 (2003), 23 | DOI | MR | Zbl

[14] Zerner M.P.W., “Multi-excited random walks on integers”, Probab. Theory Relat. Fields, 133 (2005), 98–122 | DOI | MR | Zbl