Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_282_a3, author = {Gopal Basak and Stanislav Volkov}, title = {Snakes and perturbed random walks}, journal = {Informatics and Automation}, pages = {42--51}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/} }
Gopal Basak; Stanislav Volkov. Snakes and perturbed random walks. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 42-51. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a3/
[1] Basdevant A.-L., Singh A., “Rate of growth of a transient cookie random walk”, Electron. J. Probab., 13 (2008), 811–851 | MR | Zbl
[2] Basdevant A.-L., Singh A., “On the speed of a cookie random walk”, Probab. Theory Relat. Fields, 141 (2008), 625–645 | DOI | MR | Zbl
[3] Benjamini I., Wilson D.B., “Excited random walk”, Electron. Commun. Probab., 8 (2003), 86–92 | DOI | MR | Zbl
[4] Bhattacharya R.N., Waymire E.C., Stochastic processes with applications, J. Wiley Sons, New York, 1990 | MR
[5] Davis B., “Reinforced random walk”, Probab. Theory Relat. Fields, 84 (1990), 203–229 | DOI | MR | Zbl
[6] Davis B., “Weak limits of perturbed random walks and the equation $Y_t=B_t+\alpha \sup \{Y_s\colon s\leq t\} +\beta \inf \{Y_s\colon s\leq t\}$”, Ann. Probab., 24 (1996), 2007–2023 | DOI | MR | Zbl
[7] Davis B., “Brownian motion and random walk perturbed at extrema”, Probab. Theory Relat. Fields, 113 (1999), 501–518 | DOI | MR | Zbl
[8] Durrett R., Probability: Theory and examples, 2nd ed., Duxbury Press, Belmont, CA, 1996 | MR
[9] Feller W., An introduction to probability theory and its applications, V. 2, J. Wiley Sons, New York, 1971 | MR | Zbl
[10] Kosygina E., Zerner M.P.W., “Positively and negatively excited random walks on integers, with branching processes”, Electron. J. Probab., 13 (2008), 1952–1979 | DOI | MR | Zbl
[11] Snake video game, eds. L.M. Surhone, M.T. Tennoe, S.F. Henssonow, Betascript Publ., Beau-Bassin, 2010
[12] Tóth B., “Generalized Ray–Knight theory and limit theorems for self-interacting random walks on $\mathbb Z^1$”, Ann. Probab., 24 (1996), 1324–1367 | DOI | MR | Zbl
[13] Volkov S., “Excited random walk on trees”, Electron. J. Probab., 8 (2003), 23 | DOI | MR | Zbl
[14] Zerner M.P.W., “Multi-excited random walks on integers”, Probab. Theory Relat. Fields, 133 (2005), 98–122 | DOI | MR | Zbl