Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_282_a16, author = {Yu. L. Pavlov and M. M. Stepanov}, title = {Limit distributions of the number of loops in a~random configuration graph}, journal = {Informatics and Automation}, pages = {212--230}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a16/} }
TY - JOUR AU - Yu. L. Pavlov AU - M. M. Stepanov TI - Limit distributions of the number of loops in a~random configuration graph JO - Informatics and Automation PY - 2013 SP - 212 EP - 230 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a16/ LA - ru ID - TRSPY_2013_282_a16 ER -
Yu. L. Pavlov; M. M. Stepanov. Limit distributions of the number of loops in a~random configuration graph. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 212-230. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a16/
[1] Bender E.A., Canfield E.R., “The asymptotic number of labeled graphs with given degree sequences”, J. Comb. Theory A, 24:3 (1978), 296–307 | DOI | MR | Zbl
[2] Bollobás B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, Eur. J. Comb., 1 (1980), 311–316 | DOI | MR | Zbl
[3] Faloutsos M., Faloutsos P., Faloutsos Ch., “On power-law relationships of the Internet topology”, SIGCOMM'99, Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication, Comput. Commun. Rev., 29, ACM, New York, 1999, 251–262 | DOI
[4] Gnedenko B., “Sur la distribution limite du terme maximum d'une série alétorie”, Ann. Math. Ser. 2, 44 (1943), 423–453 | DOI | MR | Zbl
[5] van der Hofstad R.W., Hooghiemstra G., Znamenski D., “Distances in random graphs with finite mean and infinite variance degrees”, Electron. J. Probab., 12 (2007), 703–766 | MR | Zbl
[6] Ibragimov I.A., Linnik Yu.V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[7] Janson S., “The probability that a random multigraph is simple”, Comb. Probab. Comput., 18 (2009), 205–225 | DOI | MR | Zbl
[8] Janson S., Łuczak T., Ruciński A., Random graphs, Wiley, New York, 2000 | MR | Zbl
[9] Molloy M., Reed B., “A critical point for random graphs with a given degree sequence”, Random Struct. Algorithms, 6 (1995), 161–179 | DOI | MR | Zbl
[10] Newman M.E.J., Strogatz S.H., Watts D.J., “Random graphs with arbitrary degree distributions and their applications”, Phys. Rev. E, 64 (2001), 026118 | DOI
[11] Pavlov Yu.L., “On power-law random graphs and branching processes”, Computer data analysis and modeling: Complex stochastic data and systems, Proc. 8th Int. Conf., V. 1, Belarus. State Univ., Minsk, 2007, 92–98
[12] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Perform. Eval., 55 (2004), 3–23 | DOI
[13] Sevastyanov B.A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[14] Stepanov M., “On the loop number of a node of random graph “Internet-type””, Optimal stopping and stochastic control, Abstr. Int. Workshop., Petrozavodsk, 2005, 65