Sevastyanov branching processes with non-homogeneous Poisson immigration
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 181-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Sevastyanov age-dependent branching processes allowing an immigration component are considered in the case when the moments of immigration form a non-homogeneous Poisson process with intensity $r(t)$. The asymptotic behavior of the expectation and of the probability of non-extinction is investigated in the critical case depending on the asymptotic rate of $r(t)$. Corresponding limit theorems are also proved using different types of normalization. Among them we obtained limiting distributions similar to the classical ones of Yaglom (1947) and Sevastyanov (1957) and also discovered new phenomena due to the non-homogeneity.
@article{TRSPY_2013_282_a14,
     author = {Kosto V. Mitov and Nikolay M. Yanev},
     title = {Sevastyanov branching processes with non-homogeneous {Poisson} immigration},
     journal = {Informatics and Automation},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a14/}
}
TY  - JOUR
AU  - Kosto V. Mitov
AU  - Nikolay M. Yanev
TI  - Sevastyanov branching processes with non-homogeneous Poisson immigration
JO  - Informatics and Automation
PY  - 2013
SP  - 181
EP  - 194
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a14/
LA  - en
ID  - TRSPY_2013_282_a14
ER  - 
%0 Journal Article
%A Kosto V. Mitov
%A Nikolay M. Yanev
%T Sevastyanov branching processes with non-homogeneous Poisson immigration
%J Informatics and Automation
%D 2013
%P 181-194
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a14/
%G en
%F TRSPY_2013_282_a14
Kosto V. Mitov; Nikolay M. Yanev. Sevastyanov branching processes with non-homogeneous Poisson immigration. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 181-194. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a14/