Estimate for the accuracy of the Poisson approximation for the number of empty cells in an equiprobable scheme for group allocation of particles, and applications
Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 165-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the distribution of the number of empty cells are analyzed for a natural generalization of an equiprobable scheme for group allocation of particles. An error estimate is obtained for the Chen–Stein method of Poisson approximation for the distribution of the number of empty cells in this scheme. This estimate is used to derive sufficient conditions for the distribution of the number of empty cells to converge to the convolutions of the Poisson distribution and two-point distributions. On the basis of these results, asymptotic properties of the solution set of a perturbed system of linear Boolean equations are studied (in the case of consistent increase in the number of unknowns and the number of equations).
@article{TRSPY_2013_282_a13,
     author = {V. G. Mikhailov},
     title = {Estimate for the accuracy of the {Poisson} approximation for the number of empty cells in an equiprobable scheme for group allocation of particles, and applications},
     journal = {Informatics and Automation},
     pages = {165--180},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a13/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Estimate for the accuracy of the Poisson approximation for the number of empty cells in an equiprobable scheme for group allocation of particles, and applications
JO  - Informatics and Automation
PY  - 2013
SP  - 165
EP  - 180
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a13/
LA  - ru
ID  - TRSPY_2013_282_a13
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Estimate for the accuracy of the Poisson approximation for the number of empty cells in an equiprobable scheme for group allocation of particles, and applications
%J Informatics and Automation
%D 2013
%P 165-180
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a13/
%G ru
%F TRSPY_2013_282_a13
V. G. Mikhailov. Estimate for the accuracy of the Poisson approximation for the number of empty cells in an equiprobable scheme for group allocation of particles, and applications. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 165-180. http://geodesic.mathdoc.fr/item/TRSPY_2013_282_a13/

[1] Kolchin V.F., Sevastyanov B.A., Chistyakov V.P., Sluchainye razmescheniya, Nauka, M., 1976 | MR

[2] Markoff A.A., Wahrscheinlichkeitsrechnung, Teubner, Leipzig; Berlin, 1912 | Zbl

[3] Sevastyanov B.A., “Predelnye teoremy v odnoi skheme razmescheniya chastits po yacheikam”, Teoriya veroyatn. i ee primen., 11:4 (1966), 696–700 | Zbl

[4] Vatutin V.A., Mikhailov V.G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4 (1982), 684–692 | MR | Zbl

[5] Barbour A.D., Holst L., Janson S., Poisson approximation, Clarendon Press, Oxford, 1992 | MR | Zbl

[6] Chistyakov V.P., “Diskretnye predelnye raspredeleniya v zadache o drobinkakh s proizvolnymi veroyatnostyami popadaniya v yaschiki”, Mat. zametki, 1:1 (1967), 9–16 | MR

[7] Sachkov V.N., “Sluchainye pokrytiya i sistemy funktsionalnykh uravnenii”, Intellektualnye sistemy, 2 (1997), 297–313

[8] Sachkov V.N., “Sluchainye neravnoveroyatnye pokrytiya i funktsionalnye uravneniya”, Trudy po diskretnoi matematike, T. 5, Fizmatlit, M., 2002, 205–218