Hyperbolic submodels of an incompressible viscoelastic Maxwell medium
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 84-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional motion of an incompressible viscoelastic Maxwell continuum is considered. The system of quasilinear equations describing this motion has both real and complex characteristics. A class of effectively one-dimensional motions is analyzed for which the original system of equations is decomposed into a hyperbolic subsystem and a quadrature. The properties of the hyperbolic submodels obtained depend on the choice of the invariant derivative in the rheological relation. When one chooses the Jaumann corotational derivative as the invariant derivative, the equations of the submodel remain quasilinear. They can be represented in the form of conservation laws, which allows one to analyze discontinuous solutions to these equations. When one chooses the upper or lower convected derivative, the equations of one-dimensional hyperbolic submodels turn out to be linear. The problem of shear motion between parallel plates and the problem of interaction between the stress field that does not depend on one of the coordinates and a transverse shear flow with initially constant vorticity are studied in detail. It is established that a plane Couette flow in the model with the corotational derivative is unstable in the linear approximation in the class of shear flows if the Weissenberg number is greater than one. The development of small perturbations gives rise to discontinuities in tangential velocities and stresses. The hysteresis phenomenon is observed when the Weissenberg number successively increases and decreases while passing through a critical value. The Couette flow in models with the upper and lower convected derivative remains stable with respect to one-dimensional perturbations.
@article{TRSPY_2013_281_a7,
     author = {V. Yu. Lyapidevskii and V. V. Pukhnachev},
     title = {Hyperbolic submodels of an incompressible viscoelastic {Maxwell} medium},
     journal = {Informatics and Automation},
     pages = {84--97},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a7/}
}
TY  - JOUR
AU  - V. Yu. Lyapidevskii
AU  - V. V. Pukhnachev
TI  - Hyperbolic submodels of an incompressible viscoelastic Maxwell medium
JO  - Informatics and Automation
PY  - 2013
SP  - 84
EP  - 97
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a7/
LA  - ru
ID  - TRSPY_2013_281_a7
ER  - 
%0 Journal Article
%A V. Yu. Lyapidevskii
%A V. V. Pukhnachev
%T Hyperbolic submodels of an incompressible viscoelastic Maxwell medium
%J Informatics and Automation
%D 2013
%P 84-97
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a7/
%G ru
%F TRSPY_2013_281_a7
V. Yu. Lyapidevskii; V. V. Pukhnachev. Hyperbolic submodels of an incompressible viscoelastic Maxwell medium. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 84-97. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a7/

[1] Astarita Dzh., Marruchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978

[2] Joseph D.D., Fluid dynamics of viscoelastic fluids, Springer, New York, 1990 | MR

[3] Godunov S.K., Romenskii E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998

[4] Brutyan M.A., Krapivskii P.L., “Gidrodinamika nenyutonovskikh zhidkostei”, Kompleksnye i spetsialnye razdely mekhaniki, T. 4, Itogi nauki i tekhniki, VINITI, M., 1991, 3–98

[5] Gerritsma M.I., Phillips T.N., “On the characteristics and compatibility equations for the UCM model fluid”, Z. angew. Math. Mech., 88:7 (2008), 523–539 | DOI | MR | Zbl

[6] Guillopé C., Saut J.-C., “Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type”, Math. Model. Numer. Anal., 24:3 (1990), 369–401 | MR | Zbl

[7] Pukhnachev V.V., “Matematicheskaya model neszhimaemoi vyazkouprugoi sredy Maksvella”, Prikl. mekh. i tekhn. fiz., 51:4 (2010), 116–126 | MR | Zbl

[8] Liapidevskii V.Yu., Pukhnachev V.V., Tani A., “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Motion, 48:8 (2011), 727–737 | DOI | MR

[9] Rutkevich I.M., “Nekotorye obschie svoistva uravnenii dinamiki vyazko-uprugoi neszhimaemoi zhidkosti”, PMM, 33 (1969), 42–51 | MR | Zbl

[10] Rutkevich I.M., “O rasprostranenii malykh vozmuschenii v vyazko-uprugoi zhidkosti”, PMM, 34 (1970), 41–56 | Zbl

[11] Joseph D.D., Saut J.C., “Change of type and loss of evolution in the flow of viscoelastic fluids”, J. Non-Newtonian Fluid Mech., 20 (1986), 117–141 | DOI | Zbl

[12] Dupret F., Marchal J.M., “Loss of evolution in the flow of viscoelastic fluids”, J. Non-Newtonian Fluid Mech., 20 (1986), 143–171 | DOI | Zbl

[13] Brutyan M.A., Kulikovskii A.G., “Neustoichivost i needinstvennost kvazistatsionarnykh techenii vyazkouprugoi zhidkosti”, Izv. RAN. Mekhanika zhidkosti i gaza, 1996, no. 6, 29–39 | MR | Zbl

[14] Andrienko Yu.A., Brutyan M.A., Obraztsov I.F., Yanovskii Yu.G., “Spurt-effekt dlya vyazkouprugikh zhidkostei v 4-konstantnoi modeli Oldroida”, DAN, 352:3 (1997), 327–330 | MR | Zbl

[15] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[16] Mescheryakova E.Yu., Pukhnachev V.V., “Gruppovoi analiz uravnenii neszhimaemoi vyazkouprugoi sredy Maksvella”, Sovremennye problemy mekhaniki sploshnoi sredy, Tr. XIV Mezhdunar. konf., Rostov-na-Donu, Azov, 2010, T. 1, Izd-vo YuFU, Rostov-na-Donu, 2010, 230–234

[17] Pukhnachev V.V., “Tochnye resheniya uravnenii dvizheniya neszhimaemoi vyazkouprugoi sredy Maksvella”, Prikl. mekh. i tekhn. fiz., 50:2 (2009), 16–23 | MR

[18] Brutyan M.A., Krapivsky P.L., “Collapse of spherical bubbles in viscoelastic liquids”, Q. J. Mech. Appl. Math., 44:4 (1991), 549–557 | DOI | MR | Zbl

[19] Osipov S.V., Pukhnachev V.V., “Zadacha o zapolnenii polosti v neszhimaemoi vyazkouprugoi srede Maksvella”, Uspekhi mekhaniki sploshnykh sred, Dalnauka, Vladivostok, 2009, 583–591

[20] Zielinska B.J.A., Demay Y., “Couette–Taylor instability in viscoelastic fluids”, Phys. Rev. A., 38:2 (1998), 897–903 | DOI

[21] Kadchenko S.I., “Reshenie problemy ustoichivosti ploskogo techeniya Kuetta”, Vestn. Magnitogorsk. gos. un-ta, 4 (2003), 80–99 | Zbl

[22] Gorodtsov V.A., Leonov A.I., “O lineinoi neustoichivosti ploskoparallelnogo techeniya Kuetta uprugo-vyazkoi zhidkosti”, PMM, 31 (1967), 289–299 | Zbl

[23] Renardy M., “A rigorous stability proof for plane Couette flow of an upper convected Maxwell fluid at zero Reynolds number”, Eur. J. Mech. B: Fluids, 11 (1992), 511–516 | MR | Zbl

[24] Kupferman R., “On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation”, J. Non-Newtonian Fluid Mech., 127 (2005), 169–190 | DOI | Zbl

[25] Catheline S., Gennisson J.-L., Tanter M., Fink M., “Observation of shock transverse waves in elastic media”, Phys. Rev. Lett., 91:16 (2003), 164301 | DOI

[26] Lyapidevskii V.Yu., Teshukov V., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000

[27] Fyrillas M.M., Georgiou G.C., “Linear stability diagrams for the shear flow of an Oldroyd-B fluid with slip along the fixed wall”, Rheol. acta., 37:1 (1998), 61–67 | DOI