Nonstationary solutions of a~generalized Korteweg--de Vries--Burgers equation
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 215-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonstationary solutions of the Cauchy problem are found for a model equation that includes complicated nonlinearity, dispersion, and dissipation terms and can describe the propagation of nonlinear longitudinal waves in rods. Earlier, within this model, complex behavior of traveling waves has been revealed; it can be regarded as discontinuity structures in solutions of the same equation that ignores dissipation and dispersion. As a result, for standard self-similar problems whose solutions are constructed from a sequence of Riemann waves and shock waves with stationary structure, these solutions become multivalued. The interaction of counterpropagating (or copropagating) nonlinear waves is studied in the case when the corresponding self-similar problems on the collision of discontinuities have a nonunique solution. In addition, situations are considered when the interaction of waves for large times gives rise to asymptotics containing discontinuities with nonstationary periodic oscillating structure.
@article{TRSPY_2013_281_a16,
     author = {A. P. Chugainova},
     title = {Nonstationary solutions of a~generalized {Korteweg--de} {Vries--Burgers} equation},
     journal = {Informatics and Automation},
     pages = {215--223},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a16/}
}
TY  - JOUR
AU  - A. P. Chugainova
TI  - Nonstationary solutions of a~generalized Korteweg--de Vries--Burgers equation
JO  - Informatics and Automation
PY  - 2013
SP  - 215
EP  - 223
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a16/
LA  - ru
ID  - TRSPY_2013_281_a16
ER  - 
%0 Journal Article
%A A. P. Chugainova
%T Nonstationary solutions of a~generalized Korteweg--de Vries--Burgers equation
%J Informatics and Automation
%D 2013
%P 215-223
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a16/
%G ru
%F TRSPY_2013_281_a16
A. P. Chugainova. Nonstationary solutions of a~generalized Korteweg--de Vries--Burgers equation. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 215-223. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a16/

[1] Gelfand I.M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2 (1959), 87–158 | MR | Zbl

[2] Godunov S.K., “O needinstvennosti “razmazyvaniya” razryvov v resheniyakh kvazilineinykh sistem”, DAN SSSR, 136:2 (1961), 272–273 | MR | Zbl

[3] Godunov S.K., Romenskii E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998

[4] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[5] Kulikovskii A.G., “O vozmozhnom vliyanii kolebanii v strukture razryva na mnozhestvo dopustimykh razryvov”, DAN SSSR, 275:6 (1984), 1349–1352 | MR

[6] Kulikovskii A.G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami: Volny rekombinatsii”, PMM, 32:6 (1968), 1125–1131

[7] Kulikovskii A.G., Sveshnikova E.I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998

[8] Kulikovskii A.G., Chugainova A.P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR

[9] Kulikovskii A.G., Chugainova A.P., “O statsionarnoi strukture udarnykh voln v uprugikh sredakh i dielektrikakh”, ZhETF, 137:5 (2010), 973–985

[10] Kulikovskii A.G., Gvozdovskaya N.I., “O vliyanii dispersii na mnozhestvo dopustimykh razryvov v mekhanike sploshnoi sredy”, Tr. MIAN, 223 (1998), 63–73 | MR | Zbl

[11] Kulikovskii A.G., Chugainova A.P., “Modelirovanie vliyaniya melkomasshtabnykh dispersionnykh protsessov v sploshnoi srede na formirovanie krupnomasshtabnykh yavlenii”, ZhVMiMF, 44:6 (2004), 1119–1126 | MR | Zbl

[12] Oleinik O.A., “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2 (1959), 165–170 | MR