Classification of the types of instability of vertical flows in geothermal systems
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 188-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of vertical flows in geothermal systems is investigated in the case when the domain occupied by water (heavy fluid) is located over the domain occupied by vapor. It is found that under the transition to an unstable regime in a neighborhood of the existing solution, a pair of new solutions appears as a result of the turning point bifurcation. We consider the dynamics of a narrow band of weakly unstable and weakly nonlinear perturbations of the plane surface of the water-to-vapor phase transition. It is shown that such perturbations obey the generalized Ginzburg–Landau–Kolmogorov–Petrovsky–Piscounov equation.
@article{TRSPY_2013_281_a14,
     author = {A. T. Il'ichev and G. G. Tsypkin},
     title = {Classification of the types of instability of vertical flows in geothermal systems},
     journal = {Informatics and Automation},
     pages = {188--198},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a14/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - G. G. Tsypkin
TI  - Classification of the types of instability of vertical flows in geothermal systems
JO  - Informatics and Automation
PY  - 2013
SP  - 188
EP  - 198
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a14/
LA  - ru
ID  - TRSPY_2013_281_a14
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A G. G. Tsypkin
%T Classification of the types of instability of vertical flows in geothermal systems
%J Informatics and Automation
%D 2013
%P 188-198
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a14/
%G ru
%F TRSPY_2013_281_a14
A. T. Il'ichev; G. G. Tsypkin. Classification of the types of instability of vertical flows in geothermal systems. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 188-198. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a14/

[1] White D.E., Muffler L.J.P., Truesdell A.H., “Vapor-dominated hydrothermal systems compared with hot-water systems”, Econ. Geol., 66 (1971), 75–97 | DOI

[2] Grant M.A., “Geothermal reservoir modeling”, Geothermics, 12:4 (1983), 251–263 | DOI | MR

[3] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961 | MR | Zbl

[4] Schubert G., Straus J.M., “Gravitational stability of water over steam in vapor-dominated geothermal systems”, J. Geophys. Res., 85:B11 (1980), 6505–6512 | DOI

[5] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005

[6] Tsypkin G.G., Ilichev A.T., “Ustoichivost statsionarnogo fronta fazovykh perekhodov voda–par v gidrotermalnykh sistemakh”, DAN, 378:2 (2001), 197–200

[7] Tsypkin G., Il'ichev A., “Gravitational stability of the interface in water over steam geothermal reservoirs”, Transp. Porous Media, 55 (2004), 183–199 | DOI | MR

[8] Il'ichev A.T., Tsypkin G.G., “Transition to instability of the interface in geothermal systems”, Eur. J. Mech. B: Fluids, 24 (2005), 491–501 | DOI | MR | Zbl

[9] Odintsova V.E., “Perekhod k neustoichivosti poverkhnosti razdela faz v poristoi srede v izotermicheskom priblizhenii”, Izv. RAN. Mekhanika zhidkosti i gaza, 2009, no. 1, 123–133 | MR | Zbl

[10] Ilichev A.T., Tsypkin G.G., “Slabonelineinaya teoriya neustoichivosti dlinnovolnovykh vozmuschenii”, DAN, 416:2 (2007), 192–194 | Zbl

[11] Il'ichev A.T., Tsypkin G.G., “Catastrophic transition to instability of evaporation front in a porous medium”, Eur. J. Mech. B: Fluids, 27 (2008), 665–677 | DOI | MR | Zbl

[12] Ilichev A.T., Tsypkin G.G., “Neustoichivosti odnorodnykh filtratsionnykh techenii s fazovym perekhodom”, ZhETF, 134:4 (2008), 815–830

[13] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. Mosk. gos. un-ta. Matematika i mekhanika, 1:6 (1937), 1–26 | MR