Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source
Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 170-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct asymptotic solutions to the wave equation with velocity rapidly oscillating against a smoothly varying background and with localized initial perturbations. First, using adiabatic approximation in the operator form, we perform homogenization that leads to a linearized Boussinesq-type equation with smooth coefficients and weak “anomalous” dispersion. Then, asymptotic solutions to this and, as a consequence, to the original equations are constructed by means of a modified Maslov canonical operator; for initial perturbations of special form, these solutions are expressed in terms of combinations of products of the Airy functions of a complex argument. On the basis of explicit formulas obtained, we analyze the effect of fast oscillations of the velocity on the solution fronts and solution profiles near the front.
@article{TRSPY_2013_281_a13,
     author = {V. V. Grushin and S. Yu. Dobrokhotov and S. A. Sergeev},
     title = {Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source},
     journal = {Informatics and Automation},
     pages = {170--187},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/}
}
TY  - JOUR
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
AU  - S. A. Sergeev
TI  - Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source
JO  - Informatics and Automation
PY  - 2013
SP  - 170
EP  - 187
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/
LA  - ru
ID  - TRSPY_2013_281_a13
ER  - 
%0 Journal Article
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%A S. A. Sergeev
%T Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source
%J Informatics and Automation
%D 2013
%P 170-187
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/
%G ru
%F TRSPY_2013_281_a13
V. V. Grushin; S. Yu. Dobrokhotov; S. A. Sergeev. Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 170-187. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/

[1] Bakhvalov N.S., Panasenko G.P., Osrednenie protsessov v periodicheskikh sredakh: Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[2] Zhikov V.V., Kozlov S.M., Oleinik O.A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[3] Marchenko V.A., Khruslov E.Ya., Usrednennye modeli mikroneodnorodnykh sred, Fiz.-tekhn. in-t nizkikh temperatur im. B.I. Verkina NAN Ukrainy, Kharkov, 2003 | Zbl

[4] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978 | MR

[5] Pelinovskii E.N., Gidrodinamika voln tsunami, In-t prikl. fiziki, N. Novgorod, 1996

[6] Dobrokhotov S.Yu., Shafarevich A.I., Tirozzi B., “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[7] Dobrokhotov S.Yu., Tirozzi B., Vargas C.A., “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl

[8] Dobrokhotov S.Yu., Nekrasov R.V., Tirozzi B., “Asymptotic solutions of the linear shallow-water equations with localized initial data”, J. Eng. Math., 69:2–3 (2011), 225–242 | DOI | MR | Zbl

[9] Bryuning I., Grushin V.V., Dobrokhotov S.Yu., “Osrednenie lineinykh operatorov, adiabaticheskoe priblizhenie i psevdodifferentsialnye operatory”, Mat. zametki, 92:2 (2012), 163–180 | DOI | MR

[10] Kulikovskii A.G., Chugainova A.P., Klassicheskie i neklassicheskie razryvy i ikh struktury v nelineino-uprugikh sredakh s dispersiei i dissipatsiei, Sovr. probl. matematiki, 7, MIAN, M., 2007 | DOI | Zbl

[11] Kulikovskii A.G., Chugainova A.P., “Avtomodelnye asimptotiki, opisyvayuschie nelineinye volny v uprugikh sredakh s dispersiei i dissipatsiei”, ZhVMiMF, 50:12 (2010), 2261–2274 | MR | Zbl

[12] Dotsenko S.F., Sergeevskii B.Yu., Cherkesov L.V., “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, Vyp. 1, Mezhduved. geofiz. kom., M., 1986, 7–14

[13] Wang S., “The propagation of the leading wave”, Coastal hydrodynamics, Proc. ASCE Specialty Conf., Univ. Delaware, June 28–July 1, 1987, ASCE, New York, 1987, 657–670

[14] Dobrokhotov S.Yu., Volkov B.I., Sekerzh-Zenkovich S.Ya., B.Tirotstsi, “Asimptoticheskoe opisanie voln tsunami v ramkakh porshnevoi modeli: obschie konstruktsii i yavno reshaemye primery”, Fund. i prikl. geofizika, 2009, no. 2, 15–29 | MR

[15] Dobrokhotov S.Yu., Sekerzh-Zenkovich S.Ya., “Odin klass tochnykh algebraicheskikh lokalizovannykh reshenii mnogomernogo volnovogo uravneniya”, Mat. zametki, 88:6 (2010), 942–945 | DOI | MR | Zbl

[16] Maslov V.P., Operatornye metody, Nauka, M., 1973 | MR

[17] Belov V.V., Dobrokhotov S.Yu., Tudorovskiy T.Ya., “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Eng. Math., 55:1–4 (2006), 183–237 | DOI | MR | Zbl

[18] Maslov V.P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[19] Maslov V.P., Fedoryuk M.V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[20] Dobrokhotov S.Yu., “Prilozhenie teorii Maslova k dvum zadacham dlya uravnenii s operatornoznachnym simvolom: elektron-fononnoe vzaimodeistvie i uravnenie Shrëdingera s bystroostsilliruyuschim potentsialom”, UMN, 39:4 (1984), 125 | MR

[21] Berlyand L.V., Dobrokhotov S.Yu., ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystro menyayuschimisya koeffitsientami”, DAN SSSR, 296:1 (1987), 80–84 | MR | Zbl

[22] Buslaev V.S., “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, UMN, 42:6 (1987), 77–98 | MR | Zbl

[23] Lifshits E.M., Pitaevskii L.P., Statisticheskaya fizika. Ch. 2: Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[24] Grushin V.V., Dobrokhotov S.Yu., “Podstanovka Paierlsa i operatornyi metod Maslova”, Mat. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl

[25] Bryuning I., Grushin V.V., Dobrokhotov S.Yu., Tudorovskii T.Ya., “Obobschennoe preobrazovanie Foldi–Vutkhaizena i psevdodifferentsialnye operatory”, TMF, 167:2 (2011), 171–192 | DOI

[26] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1966 | MR | Zbl

[27] V.A. Borovikov, M.Ya. Kelbert, “Pole vblizi fronta volny v zadache Koshi–Puassona”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1984, no. 2, 173–174 | MR | Zbl

[28] Sekerzh-Zenkovich S.Ya., “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl

[29] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl