Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_281_a13, author = {V. V. Grushin and S. Yu. Dobrokhotov and S. A. Sergeev}, title = {Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source}, journal = {Informatics and Automation}, pages = {170--187}, publisher = {mathdoc}, volume = {281}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/} }
TY - JOUR AU - V. V. Grushin AU - S. Yu. Dobrokhotov AU - S. A. Sergeev TI - Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source JO - Informatics and Automation PY - 2013 SP - 170 EP - 187 VL - 281 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/ LA - ru ID - TRSPY_2013_281_a13 ER -
%0 Journal Article %A V. V. Grushin %A S. Yu. Dobrokhotov %A S. A. Sergeev %T Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source %J Informatics and Automation %D 2013 %P 170-187 %V 281 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/ %G ru %F TRSPY_2013_281_a13
V. V. Grushin; S. Yu. Dobrokhotov; S. A. Sergeev. Homogenization and dispersion effects in the problem of propagation of waves generated by a~localized source. Informatics and Automation, Modern problems of mechanics, Tome 281 (2013), pp. 170-187. http://geodesic.mathdoc.fr/item/TRSPY_2013_281_a13/
[1] Bakhvalov N.S., Panasenko G.P., Osrednenie protsessov v periodicheskikh sredakh: Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl
[2] Zhikov V.V., Kozlov S.M., Oleinik O.A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl
[3] Marchenko V.A., Khruslov E.Ya., Usrednennye modeli mikroneodnorodnykh sred, Fiz.-tekhn. in-t nizkikh temperatur im. B.I. Verkina NAN Ukrainy, Kharkov, 2003 | Zbl
[4] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978 | MR
[5] Pelinovskii E.N., Gidrodinamika voln tsunami, In-t prikl. fiziki, N. Novgorod, 1996
[6] Dobrokhotov S.Yu., Shafarevich A.I., Tirozzi B., “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[7] Dobrokhotov S.Yu., Tirozzi B., Vargas C.A., “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl
[8] Dobrokhotov S.Yu., Nekrasov R.V., Tirozzi B., “Asymptotic solutions of the linear shallow-water equations with localized initial data”, J. Eng. Math., 69:2–3 (2011), 225–242 | DOI | MR | Zbl
[9] Bryuning I., Grushin V.V., Dobrokhotov S.Yu., “Osrednenie lineinykh operatorov, adiabaticheskoe priblizhenie i psevdodifferentsialnye operatory”, Mat. zametki, 92:2 (2012), 163–180 | DOI | MR
[10] Kulikovskii A.G., Chugainova A.P., Klassicheskie i neklassicheskie razryvy i ikh struktury v nelineino-uprugikh sredakh s dispersiei i dissipatsiei, Sovr. probl. matematiki, 7, MIAN, M., 2007 | DOI | Zbl
[11] Kulikovskii A.G., Chugainova A.P., “Avtomodelnye asimptotiki, opisyvayuschie nelineinye volny v uprugikh sredakh s dispersiei i dissipatsiei”, ZhVMiMF, 50:12 (2010), 2261–2274 | MR | Zbl
[12] Dotsenko S.F., Sergeevskii B.Yu., Cherkesov L.V., “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, Vyp. 1, Mezhduved. geofiz. kom., M., 1986, 7–14
[13] Wang S., “The propagation of the leading wave”, Coastal hydrodynamics, Proc. ASCE Specialty Conf., Univ. Delaware, June 28–July 1, 1987, ASCE, New York, 1987, 657–670
[14] Dobrokhotov S.Yu., Volkov B.I., Sekerzh-Zenkovich S.Ya., B.Tirotstsi, “Asimptoticheskoe opisanie voln tsunami v ramkakh porshnevoi modeli: obschie konstruktsii i yavno reshaemye primery”, Fund. i prikl. geofizika, 2009, no. 2, 15–29 | MR
[15] Dobrokhotov S.Yu., Sekerzh-Zenkovich S.Ya., “Odin klass tochnykh algebraicheskikh lokalizovannykh reshenii mnogomernogo volnovogo uravneniya”, Mat. zametki, 88:6 (2010), 942–945 | DOI | MR | Zbl
[16] Maslov V.P., Operatornye metody, Nauka, M., 1973 | MR
[17] Belov V.V., Dobrokhotov S.Yu., Tudorovskiy T.Ya., “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Eng. Math., 55:1–4 (2006), 183–237 | DOI | MR | Zbl
[18] Maslov V.P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[19] Maslov V.P., Fedoryuk M.V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[20] Dobrokhotov S.Yu., “Prilozhenie teorii Maslova k dvum zadacham dlya uravnenii s operatornoznachnym simvolom: elektron-fononnoe vzaimodeistvie i uravnenie Shrëdingera s bystroostsilliruyuschim potentsialom”, UMN, 39:4 (1984), 125 | MR
[21] Berlyand L.V., Dobrokhotov S.Yu., ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystro menyayuschimisya koeffitsientami”, DAN SSSR, 296:1 (1987), 80–84 | MR | Zbl
[22] Buslaev V.S., “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, UMN, 42:6 (1987), 77–98 | MR | Zbl
[23] Lifshits E.M., Pitaevskii L.P., Statisticheskaya fizika. Ch. 2: Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR
[24] Grushin V.V., Dobrokhotov S.Yu., “Podstanovka Paierlsa i operatornyi metod Maslova”, Mat. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl
[25] Bryuning I., Grushin V.V., Dobrokhotov S.Yu., Tudorovskii T.Ya., “Obobschennoe preobrazovanie Foldi–Vutkhaizena i psevdodifferentsialnye operatory”, TMF, 167:2 (2011), 171–192 | DOI
[26] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1966 | MR | Zbl
[27] V.A. Borovikov, M.Ya. Kelbert, “Pole vblizi fronta volny v zadache Koshi–Puassona”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1984, no. 2, 173–174 | MR | Zbl
[28] Sekerzh-Zenkovich S.Ya., “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl
[29] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl