Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_280_a12, author = {Hermann K\"onig and Vitali Milman}, title = {Rigidity and stability of the {Leibniz} and the chain rule}, journal = {Informatics and Automation}, pages = {198--214}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a12/} }
Hermann König; Vitali Milman. Rigidity and stability of the Leibniz and the chain rule. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 198-214. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a12/
[1] Aczél J., Lectures on functional equations and their applications, Acad. Press, New York, 1966 | MR | Zbl
[2] Artstein-Avidan S., Faifman D., Milman V., “On multiplicative maps of continuous and smooth functions”, Geometric aspects of functional analysis, Israel seminar 2006–2010, Lect. Notes Math., 2050, Springer, Berlin, 2012, 35–59 | DOI | MR | Zbl
[3] Artstein-Avidan S., König H., Milman V., “The chain rule as a functional equation”, J. Funct. Anal., 259 (2010), 2999–3024 | DOI | MR | Zbl
[4] Kestelman H., “On the functional equation $f(x+y) = f(x) + f(y)$”, Fundam. math., 34 (1947), 144–147 | MR | Zbl
[5] König H., Milman V., “Characterizing the derivative and the entropy function by the Leibniz rule”, J. Funct. Anal., 261 (2011), 1325–1344 | DOI | MR | Zbl
[6] König H., Milman V., “An operator equation generalizing the Leibniz rule for the second derivative”, Geometric aspects of functional analysis, Israel seminar 2006–2010, Lect. Notes Math., 2050, Springer, Berlin, 2012, 279–299 | DOI | MR | Zbl
[7] König H., Milman V., “An operator equation characterizing the Laplacian”, Algebra i analiz, 24:4 (2012), 137–155