Greedy bases in $L^p$ spaces
Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 188-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a weighted $L^p$ space $L^p(w)$ with a weight function $w$. It is known that the Haar system $\mathcal H_p$ normalized in $L^p$ is a greedy basis of $L^p$, $1$. We study a question of when the Haar system $\mathcal H_p^w$ normalized in $L^p(w)$ is a greedy basis of $L^p(w)$, $1$. We prove that if $w$ is such that $\mathcal H_p^w$ is a Schauder basis of $L^p(w)$, then $\mathcal H_p^w$ is also a greedy basis of $L^p(w)$, $1$. Moreover, we prove that a subsystem of the Haar system obtained by discarding finitely many elements from it is a Schauder basis in a weighted norm space $L^p(w)$; then it is a greedy basis.
@article{TRSPY_2013_280_a11,
     author = {K. Kazarian and V. N. Temlyakov},
     title = {Greedy bases in $L^p$ spaces},
     journal = {Informatics and Automation},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/}
}
TY  - JOUR
AU  - K. Kazarian
AU  - V. N. Temlyakov
TI  - Greedy bases in $L^p$ spaces
JO  - Informatics and Automation
PY  - 2013
SP  - 188
EP  - 197
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/
LA  - en
ID  - TRSPY_2013_280_a11
ER  - 
%0 Journal Article
%A K. Kazarian
%A V. N. Temlyakov
%T Greedy bases in $L^p$ spaces
%J Informatics and Automation
%D 2013
%P 188-197
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/
%G en
%F TRSPY_2013_280_a11
K. Kazarian; V. N. Temlyakov. Greedy bases in $L^p$ spaces. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 188-197. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/

[1] Dilworth S.J., Kalton N.J., Kutzarova D., Temlyakov V.N., “The thresholding greedy algorithm, greedy bases, and duality”, Constr. Approx., 19 (2003), 575–597 | DOI | MR | Zbl

[2] Kazarian K.S., “On bases and unconditional bases in the spaces $L^p(d\mu )$, $1\le p\infty $”, Stud. math., 71 (1982), 227–249 | MR | Zbl

[3] Kazaryan K.S., “O multiplikativnom dopolnenii nekotorykh sistem”, Izv. AN ArmSSR. Ser. mat., 13 (1978), 315–351 | MR | Zbl

[4] Konyagin S.V., Temlyakov V.N., “A remark on greedy approximation in Banach spaces”, East. J. Approx., 5 (1999), 365–379 | MR | Zbl

[5] Konyagin S.V., Temlyakov V.N., “Greedy approximation with regard to bases and general minimal systems”, Serdica Math. J., 28 (2002), 305–328 | MR | Zbl

[6] Krantsberg A.S., “O bazisnosti sistemy Khaara v vesovykh prostranstvakh”, Tr. MIEM, 24 (1972), 14–21

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I: Sequence spaces, Springer, Berlin, 1977 | MR

[8] De Natividade M., “Best approximation with wavelets in weighted Orlicz spaces”, Monatsh. Math., 164:1 (2011), 87–114 | DOI | MR | Zbl

[9] Temlyakov V.N., “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8 (1998), 249–265 | DOI | MR | Zbl

[10] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl

[11] Temlyakov V.N., “Greedy approximation”, Acta numerica, 17 (2008), 235–409 | DOI | MR | Zbl

[12] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl