Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_280_a11, author = {K. Kazarian and V. N. Temlyakov}, title = {Greedy bases in $L^p$ spaces}, journal = {Informatics and Automation}, pages = {188--197}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/} }
K. Kazarian; V. N. Temlyakov. Greedy bases in $L^p$ spaces. Informatics and Automation, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 188-197. http://geodesic.mathdoc.fr/item/TRSPY_2013_280_a11/
[1] Dilworth S.J., Kalton N.J., Kutzarova D., Temlyakov V.N., “The thresholding greedy algorithm, greedy bases, and duality”, Constr. Approx., 19 (2003), 575–597 | DOI | MR | Zbl
[2] Kazarian K.S., “On bases and unconditional bases in the spaces $L^p(d\mu )$, $1\le p\infty $”, Stud. math., 71 (1982), 227–249 | MR | Zbl
[3] Kazaryan K.S., “O multiplikativnom dopolnenii nekotorykh sistem”, Izv. AN ArmSSR. Ser. mat., 13 (1978), 315–351 | MR | Zbl
[4] Konyagin S.V., Temlyakov V.N., “A remark on greedy approximation in Banach spaces”, East. J. Approx., 5 (1999), 365–379 | MR | Zbl
[5] Konyagin S.V., Temlyakov V.N., “Greedy approximation with regard to bases and general minimal systems”, Serdica Math. J., 28 (2002), 305–328 | MR | Zbl
[6] Krantsberg A.S., “O bazisnosti sistemy Khaara v vesovykh prostranstvakh”, Tr. MIEM, 24 (1972), 14–21
[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I: Sequence spaces, Springer, Berlin, 1977 | MR
[8] De Natividade M., “Best approximation with wavelets in weighted Orlicz spaces”, Monatsh. Math., 164:1 (2011), 87–114 | DOI | MR | Zbl
[9] Temlyakov V.N., “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8 (1998), 249–265 | DOI | MR | Zbl
[10] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl
[11] Temlyakov V.N., “Greedy approximation”, Acta numerica, 17 (2008), 235–409 | DOI | MR | Zbl
[12] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl