On the analytic complexity of discriminants
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 86-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the notion of analytic complexity introduced by V. K. Beloshapka. We give an algorithm which allows one to check whether a bivariate analytic function belongs to the second class of analytic complexity. We also provide estimates for the analytic complexity of classical discriminants and introduce the notion of analytic complexity of a knot.
@article{TRSPY_2012_279_a7,
     author = {V. A. Krasikov and T. M. Sadykov},
     title = {On the analytic complexity of discriminants},
     journal = {Informatics and Automation},
     pages = {86--101},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a7/}
}
TY  - JOUR
AU  - V. A. Krasikov
AU  - T. M. Sadykov
TI  - On the analytic complexity of discriminants
JO  - Informatics and Automation
PY  - 2012
SP  - 86
EP  - 101
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a7/
LA  - ru
ID  - TRSPY_2012_279_a7
ER  - 
%0 Journal Article
%A V. A. Krasikov
%A T. M. Sadykov
%T On the analytic complexity of discriminants
%J Informatics and Automation
%D 2012
%P 86-101
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a7/
%G ru
%F TRSPY_2012_279_a7
V. A. Krasikov; T. M. Sadykov. On the analytic complexity of discriminants. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 86-101. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a7/

[1] Vitushkin A. G., “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR | Zbl

[2] Adams C. C., The knot book: An elementary introduction to the mathematical theory of knots, Freeman, New York, 1994 | MR | Zbl

[3] Bank S. B., Kaufman R. P., “A note on Hölder's theorem concerning the Gamma function”, Math. Ann., 232 (1978), 115–120 | DOI | MR | Zbl

[4] Beloshapka V. K., “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[5] Beukers F., Heckman G., “Monodromy for the hypergeometric function $_nF_{n-1}$”, Invent. math., 95 (1989), 325–354 | DOI | MR | Zbl

[6] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[7] Grothendieck A., “Esquisse d'un programme (Sketch of a programme)”, Geometric Galois actions, v. 1, LMS Lect. Note Ser., 242, Around Grothendieck's “Esquisse d'un programme”, Cambridge Univ. Press, Cambridge, 1997, 5–48, 243–283 | MR | Zbl

[8] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl

[9] Passare M., Sadykov T., Tsikh A., “Singularities of hypergeometric functions in several variables”, Compos. math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[10] Zupan A., Bridge and pants complexities of knots, E-print, 2011, arXiv: 1110.3019[math.GT] | MR