Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_279_a6, author = {V. A. Zorich}, title = {Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of {sub-Riemannian} manifolds}, journal = {Informatics and Automation}, pages = {81--85}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/} }
TY - JOUR AU - V. A. Zorich TI - Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds JO - Informatics and Automation PY - 2012 SP - 81 EP - 85 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/ LA - ru ID - TRSPY_2012_279_a6 ER -
%0 Journal Article %A V. A. Zorich %T Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds %J Informatics and Automation %D 2012 %P 81-85 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/ %G ru %F TRSPY_2012_279_a6
V. A. Zorich. Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 81-85. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/
[1] Lavrentev M. A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242
[2] Zorich V. A., “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Mat. sb., 74(116):3 (1967), 417–433 | MR | Zbl
[3] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lect. Notes Math., 1508, Springer, Berlin, 1992, 132–148 | DOI | MR
[4] Zorich V. A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, UMN, 57:3 (2002), 3–28 | DOI | MR | Zbl
[5] Zorich V. A., “Dopustimyi poryadok rosta koeffitsienta kvazikonformnosti v teoreme M. A. Lavrenteva”, DAN SSSR, 181:3 (1968), 530–533 | Zbl
[6] Gromov M., “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics, Proc. Conf. (Stony Brook, 1978), Ann. Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR
[7] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, With appendices by M. Katz, P. Pansu, S. Semmes, Birkhäuser, Boston, 1999 | MR | Zbl
[8] Zorich V. A., “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | DOI | MR | Zbl
[9] Zorich V. A., “Asimptotika dopustimogo rosta koeffitsienta kvazikonformnosti v beskonechnosti i in'ektivnost pogruzhenii rimanovykh mnogoobrazii”, UMN, 58:3 (2003), 191–192 | DOI | MR | Zbl
[10] Zorich V. A., “Asymptotics of the admissible growth of the coefficient of quasiconformality at infinity and injectivity of immersions of Riemannian manifolds”, Publ. Inst. Math. Nouv. Sér., 75 (2004), 53–57 | DOI | MR | Zbl
[11] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[12] Zorich V. A., “O kontaktnykh kvazikonformnykh pogruzheniyakh”, UMN, 60:2 (2005), 161–162 | DOI | MR | Zbl
[13] Zorich V. A., “Kontaktnye kvazikonformnye pogruzheniya”, Tr. MIAN, 253, 2006, 81–87 | MR
[14] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. analiz i ego pril., 30:2 (1996), 40–55 | DOI | MR | Zbl
[15] Zorich V. A., “Asimptotika dopustimogo rosta koeffitsienta kvazikonformnosti v beskonechnosti i obratimost kontaktnykh pogruzhenii gruppy Geizenberga”, UMN, 65:3 (2010), 191–192 | DOI | MR | Zbl
[16] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[17] Grigor'yan A., “Isoperimetric inequalities and capacities on Riemannian manifolds”, The Maz'ya anniversary collection, v. 1, Oper. Theory: Adv. Appl., 109, Birkhäuser, Basel, 1999, 139–153 | MR | Zbl