Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 81-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine the asymptotic behavior of the admissible growth of the quasiconformality coefficient in a general global injectivity theorem for immersions of sub-Riemannian manifolds of conformally parabolic type. In the model case of a contact immersion of the Heisenberg group in itself, the asymptotic behavior of the admissible growth of the quasiconformality coefficient for which the mapping is still globally invertible was found by the author earlier.
@article{TRSPY_2012_279_a6,
     author = {V. A. Zorich},
     title = {Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of {sub-Riemannian} manifolds},
     journal = {Informatics and Automation},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds
JO  - Informatics and Automation
PY  - 2012
SP  - 81
EP  - 85
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/
LA  - ru
ID  - TRSPY_2012_279_a6
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds
%J Informatics and Automation
%D 2012
%P 81-85
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/
%G ru
%F TRSPY_2012_279_a6
V. A. Zorich. Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 81-85. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a6/