Model-surface method: An infinite-dimensional version
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model-surface method is applied to the study of real analytic submanifolds of a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional case; however, there are some peculiarities and specific difficulties. One of these peculiarities is the existence of a model surface with the Levi–Tanaka algebra of infinite length.
@article{TRSPY_2012_279_a2,
     author = {V. K. Beloshapka},
     title = {Model-surface method: {An} infinite-dimensional version},
     journal = {Informatics and Automation},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Model-surface method: An infinite-dimensional version
JO  - Informatics and Automation
PY  - 2012
SP  - 20
EP  - 30
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a2/
LA  - ru
ID  - TRSPY_2012_279_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Model-surface method: An infinite-dimensional version
%J Informatics and Automation
%D 2012
%P 20-30
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a2/
%G ru
%F TRSPY_2012_279_a2
V. K. Beloshapka. Model-surface method: An infinite-dimensional version. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a2/

[1] Beloshapka V. K., “Veschestvennye podmnogoobraziya kompleksnogo prostranstva: ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | DOI | MR | Zbl

[2] Beloshapka V. K., “Universalnaya model veschestvennogo podmnogoobraziya”, Mat. zametki, 75:4 (2004), 507–522 | DOI | MR | Zbl

[3] Beloshapka V. K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Mat. zametki, 70:4 (2001), 503–519 | DOI | MR | Zbl

[4] Beloshapka V. K., “Polinomialnye modeli veschestvennykh mnogoobrazii”, Izv. RAN. Ser. mat., 65:4 (2001), 3–20 | DOI | MR | Zbl

[5] Mujica J., Complex analysis in Banach spaces: Holomorphic functions and domains of holomorphy in finite and infinite dimensions, North-Holland Math. Stud., 120, North-Holland, Amsterdam, 1986 | MR | Zbl

[6] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl

[7] Gammel R. V., Kossovskii I. G., “Obolochka golomorfnosti modelnoi poverkhnosti stepeni tri i fenomen ‘zhestkosti’ ”, Tr. MIAN, 253, 2006, 30–45 | MR

[8] Tumanov A. E., “Konechnomernost gruppy CR-avtomorfizmov standartnogo CR-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 651–659 | MR | Zbl

[9] Kaup W., “Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten”, Math. Ann., 204 (1973), 131–144 | DOI | MR | Zbl

[10] Isaev A., Kaup W., “Regularization of local CR-automorphisms of real-analytic CR-manifolds”, J. Geom. Anal., 22:1 (2012), 244–260 | DOI | MR | Zbl

[11] Zaitsev D., “Germs of local automorphisms of real-analytic CR structures and analytic dependence on $k$-jets”, Math. Res. Lett., 4:6 (1997), 823–842 | DOI | MR | Zbl

[12] Ežov V. V., Schmalz G., “A matrix Poincaré formula for holomorphic automorphisms of quadrics of higher codimension. Real associative quadrics”, J. Geom. Anal., 8:1 (1997), 27–41 | MR

[13] Shevchenko S. N., “Kvadriki korazmernosti dva i ikh avtomorfizmy”, Izv. RAN. Ser. mat., 58:4 (1994), 149–172 | MR | Zbl