Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_279_a14, author = {J. J. Carmona and K. Yu. Fedorovskiy}, title = {New conditions for uniform approximation by polyanalytic polynomials}, journal = {Informatics and Automation}, pages = {227--241}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a14/} }
TY - JOUR AU - J. J. Carmona AU - K. Yu. Fedorovskiy TI - New conditions for uniform approximation by polyanalytic polynomials JO - Informatics and Automation PY - 2012 SP - 227 EP - 241 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a14/ LA - en ID - TRSPY_2012_279_a14 ER -
J. J. Carmona; K. Yu. Fedorovskiy. New conditions for uniform approximation by polyanalytic polynomials. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 227-241. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a14/
[1] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, Noordhoff, Leyden, 1975 | MR | Zbl
[2] Balk M. B., Polyanalytic functions, Math. Res., 63, Akademie, Berlin, 1991 | MR | Zbl
[3] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 ; Mergelyan S. N., Uniform approximations to functions of a complex variable, AMS Transl., 101, Amer. Math. Soc., Providence, RI, 1954 | MR | Zbl | MR
[4] Carmona J. J., “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl
[5] Fedorovskii K. Yu., “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes., 59 (1996), 435–439 | DOI | DOI | MR | Zbl
[6] Carmona J. J., Paramonov P. V., Fedorovskiy K. Yu., “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193 (2002), 1469–1492 | DOI | DOI | MR | Zbl
[7] Boivin A., Gauthier P. M., Paramonov P. V., “On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$”, Izv. Math., 68 (2004), 447–459 | DOI | DOI | MR | Zbl
[8] Carmona J. J., Fedorovskiy K. Yu., “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory. Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl
[9] Carmona J. J., Fedorovskiy K. Yu., “On the dependence of uniform polyanalytic polynomial approximations on the order of polyanalyticity”, Math. Notes., 83 (2008), 31–36 | DOI | DOI | MR | Zbl
[10] Davis P. J., The Schwarz function and its applications, Carus Math. Monogr., 17, Math. Assoc. Amer., Washington, D.C., 1974 | MR | Zbl
[11] Fedorovskii K. Yu., “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253, 2006, 186–194 | DOI | MR
[12] Baranov A. D., Fedorovskiy K. Yu., “Boundary regularity of Nevanlinna domains and univalent functions in model subspaces”, Sb. Math., 202 (2011), 1723–1740 | DOI | DOI | MR | Zbl
[13] Bishop E., “The structure of certain measures”, Duke Math. J., 25:2 (1958), 283–289 | DOI | MR | Zbl
[14] Stout E. L., The theory of uniform algebras, Bogden Quigley, Tarrytown-on-Hudson, NY, 1971 | MR | Zbl
[15] Paramonov P. V., “$C^m$-approximation by harmonic polynomials on compact sets in $\mathbb R^n$”, Russ. Acad. Sci., Sb. Math., 78 (1994), 231–251 | MR | Zbl
[16] Gustafsson B., Shapiro H. S., “What is a quadrature domain?”, Quadrature domains and their applications, Oper. Theory Adv. Appl., 156, Birkhäuser, Basel, 2005, 1–25 | DOI | MR | Zbl
[17] Aharonov D., Shapiro H. S., “Domains on which analytic functions satisfy quadrature identities”, J. anal. math., 30 (1976), 39–73 | DOI | MR | Zbl
[18] Sakai M., “Regularity of a boundary having a Schwarz function”, Acta math., 166 (1991), 263–297 | DOI | MR | Zbl
[19] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl