Magnetic Bloch theory and noncommutative geometry
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 193-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpretation of the magnetic Bloch theory in terms of noncommutative geometry is given. As an application we obtain a mathematical interpretation of the quantum Hall effect.
@article{TRSPY_2012_279_a11,
     author = {A. G. Sergeev},
     title = {Magnetic {Bloch} theory and noncommutative geometry},
     journal = {Informatics and Automation},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a11/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Magnetic Bloch theory and noncommutative geometry
JO  - Informatics and Automation
PY  - 2012
SP  - 193
EP  - 205
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a11/
LA  - ru
ID  - TRSPY_2012_279_a11
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Magnetic Bloch theory and noncommutative geometry
%J Informatics and Automation
%D 2012
%P 193-205
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a11/
%G ru
%F TRSPY_2012_279_a11
A. G. Sergeev. Magnetic Bloch theory and noncommutative geometry. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 193-205. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a11/

[1] Ashkroft N., Mermin N., Fizika tverdogo tela, v. 1, 2, Mir, M., 1979

[2] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl

[3] Berezin F. A., Shubin M. A., The Schrödinger equation, Kluwer, Dordrecht, 1991 | MR | Zbl

[4] Carey A. L., Hannabuss K. C., Mathai V., “Quantum Hall effect and noncommutative geometry”, J. Geom. Symmetry Phys., 6 (2006), 16–37 ; arXiv: math/0008115[math.OA] | MR | Zbl

[5] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[6] Gruber M., “Noncommutative Bloch theory”, J. Math. Phys., 42 (2001), 2438–2465 | DOI | MR | Zbl

[7] Kordyukov Y., Mathai V., Shubin M., “Equivalence of spectral projections in semiclassical limit and a vanishing theorem for higher traces in $K$-theory”, J. reine angew. Math., 581 (2005), 193–236 | DOI | MR | Zbl

[8] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[9] Laughlin R. B., “Quantized Hall conductivity in two dimensions”, Phys. Rev. B, 23 (1981), 5632–5633 | DOI

[10] Thouless D. J., Kohmoto M., Nightingale M. P., den Nijs M., “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI

[11] Xia J., “Geometric invariants of the quantum Hall effect”, Commun. Math. Phys., 119 (1988), 29–50 | DOI | MR | Zbl