Analytic continuations of a~general algebraic function by means of Puiseux series
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 9-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete list of power series (centered at the point $x=0$) is obtained for the solution $y(x)$ of the general reduced algebraic equation $y^n+x_s y^{n_s}+\dots +x_1 y^{n_1}-1=0$. The domains of convergence of these series are described in terms of the amoeba of the discriminant of the equation. Sectorial domains through which one selected series is analytically continued to the other series are explicitly described.
@article{TRSPY_2012_279_a1,
author = {I. A. Antipova and E. N. Mikhalkin},
title = {Analytic continuations of a~general algebraic function by means of {Puiseux} series},
journal = {Informatics and Automation},
pages = {9--19},
publisher = {mathdoc},
volume = {279},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/}
}
TY - JOUR AU - I. A. Antipova AU - E. N. Mikhalkin TI - Analytic continuations of a~general algebraic function by means of Puiseux series JO - Informatics and Automation PY - 2012 SP - 9 EP - 19 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/ LA - ru ID - TRSPY_2012_279_a1 ER -
I. A. Antipova; E. N. Mikhalkin. Analytic continuations of a~general algebraic function by means of Puiseux series. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 9-19. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/