Analytic continuations of a~general algebraic function by means of Puiseux series
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete list of power series (centered at the point $x=0$) is obtained for the solution $y(x)$ of the general reduced algebraic equation $y^n+x_s y^{n_s}+\dots +x_1 y^{n_1}-1=0$. The domains of convergence of these series are described in terms of the amoeba of the discriminant of the equation. Sectorial domains through which one selected series is analytically continued to the other series are explicitly described.
@article{TRSPY_2012_279_a1,
     author = {I. A. Antipova and E. N. Mikhalkin},
     title = {Analytic continuations of a~general algebraic function by means of {Puiseux} series},
     journal = {Informatics and Automation},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/}
}
TY  - JOUR
AU  - I. A. Antipova
AU  - E. N. Mikhalkin
TI  - Analytic continuations of a~general algebraic function by means of Puiseux series
JO  - Informatics and Automation
PY  - 2012
SP  - 9
EP  - 19
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/
LA  - ru
ID  - TRSPY_2012_279_a1
ER  - 
%0 Journal Article
%A I. A. Antipova
%A E. N. Mikhalkin
%T Analytic continuations of a~general algebraic function by means of Puiseux series
%J Informatics and Automation
%D 2012
%P 9-19
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/
%G ru
%F TRSPY_2012_279_a1
I. A. Antipova; E. N. Mikhalkin. Analytic continuations of a~general algebraic function by means of Puiseux series. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 9-19. http://geodesic.mathdoc.fr/item/TRSPY_2012_279_a1/

[1] Vitushkin A. G., “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR | Zbl

[2] Mellin H. J., “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. r. Acad. sci. Paris, 172 (1921), 658–661 | Zbl

[3] Semusheva A. Yu., Tsikh A. K., “Prodolzhenie issledovanii Mellina o reshenii algebraicheskikh uravnenii”, Kompleksnyi analiz i differentsialnye operatory, K 150-letiyu S. V. Kovalevskoi, KrasGU, Krasnoyarsk, 2000, 134–146

[4] Belardinelli G., Fonctions hypergéométriques de plusieurs variables et résolution analytique des équations algébriques générales, Mém. sci. math., 145, Gauthier-Villars, Paris, 1960 | MR

[5] Birkeland R., “Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen”, Math. Z., 26 (1927), 566–578 | DOI | MR | Zbl

[6] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[7] Passare M., Tsikh A., “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, 653–672 | DOI | MR | Zbl

[8] Antipova I. A., “Obrascheniya mnogomernykh preobrazovanii Mellina i resheniya algebraicheskikh uravnenii”, Mat. sb., 198:4 (2007), 3–20 | DOI | MR | Zbl

[9] Tsikh A. K., Multidimensional residues and their applications, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[10] Zhdanov O. N., Tsikh A. K., “Issledovanie kratnykh integralov Mellina–Barnsa s pomoschyu mnogomernykh vychetov”, Sib. mat. zhurn., 39:2 (1998), 281–298 | MR | Zbl

[11] Passare M., Tsikh A., Zhdanov O., “A multidimensional Jordan residue lemma with an application to Mellin–Barnes integrals”, Contributions to complex analysis and analytic geometry, Aspects Math. E, 26, Vieweg, Braunschweig, 1994, 233–241 | DOI | MR | Zbl

[12] Kytmanov A. M., Tsikh A. K., “Integralnye predstavleniya i vychety (po rabotam krasnoyarskoi shkoly)”, Kompleksnyi analiz v sovremennoi matematike, K 80-letiyu so dnya rozhdeniya B. V. Shabata, Fazis, M., 2001, 198–216 | MR

[13] Semusheva A. Yu., Tsikh A. K., “Oblasti skhodimosti gipergeometricheskikh ryadov mnogikh kompleksnykh peremennykh”, Zhurn. Sib. feder. un-ta. Matematika i fizika, 2:2 (2009), 221–229

[14] Mikhalkin E. N., “O reshenii obschikh algebraicheskikh uravnenii s pomoschyu integralov ot elementarnykh funktsii”, Sib. mat. zhurn., 47:2 (2006), 365–371 | MR | Zbl

[15] Bârsan V., Nemneş G. A., “Physical relevance of the Passare–Tsikh solution of the principal quintic equation”, J. Adv. Res. Phys., 2:1 (2011), 011102

[16] Perelomov A. M., “Gipergeometricheskie resheniya nekotorykh algebraicheskikh uravnenii”, TMF, 140:1 (2004), 3–13 | DOI | MR | Zbl

[17] Sturmfels B., “Solving algebraic equations in terms of $\mathcal A$-hypergeometric series”, Discrete Math., 210:1–3 (2000), 171–181 | DOI | MR | Zbl

[18] Bod E., “Algebraicity of the Appell–Lauricella and Horn hypergeometric functions”, J. Diff. Eqns., 252:1 (2012), 541–566 | DOI | MR | Zbl

[19] Beukers F., Monodromy of A-hypergeometric functions, E-print, 2011, arXiv: 1101.0493v1[math.AG] | MR