On the Navier--Stokes equations: Existence theorems and energy equalities
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 75-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently available results on the solvability of the Navier–Stokes equations for incompressible non-Newtonian fluids are presented. The order of nonlinearity in the equations may be variable; the only requirement is that it must be a measurable function. Unsteady and steady equations are considered. A lot of attention is paid to the recovery of energy balance, whose violation is theoretically admissible, in particular, in the three-dimensional classical unsteady Navier–Stokes equation. When constructing a weak solution by a limit procedure, a measure arises as a limit of viscous energy densities. Generally speaking, the limit measure contains a nonnegative singular (with respect to the Lebesgue measure) component. It is this singular component that maintains energy balance. Sufficient conditions for the absence of a singular component are studied: in this case, the standard energy equality holds. In many respects, only the regular component of the limit measure is important: in the natural form it is equal to the product of the viscous stress tensor and the gradient of a solution; if this natural form is retained, then the problem is solvable. Conditions are found for the validity of the indicated fundamental representation of the absolutely continuous component of the limit measure.
@article{TRSPY_2012_278_a7,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {On the {Navier--Stokes} equations: {Existence} theorems and energy equalities},
     journal = {Informatics and Automation},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a7/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - On the Navier--Stokes equations: Existence theorems and energy equalities
JO  - Informatics and Automation
PY  - 2012
SP  - 75
EP  - 95
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a7/
LA  - ru
ID  - TRSPY_2012_278_a7
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T On the Navier--Stokes equations: Existence theorems and energy equalities
%J Informatics and Automation
%D 2012
%P 75-95
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a7/
%G ru
%F TRSPY_2012_278_a7
V. V. Zhikov; S. E. Pastukhova. On the Navier--Stokes equations: Existence theorems and energy equalities. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 75-95. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a7/

[1] Caffarelli L., Kohn R., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Commun. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] Lin F., “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Commun. Pure Appl. Math., 51 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] Ladyzhenskaya O.A., “O novykh uravneniyakh dlya opisaniya dvizhenii vyazkikh neszhimaemykh zhidkostei i razreshimosti v tselom dlya nikh kraevykh zadach”, Tr. MIAN, 102, 1967, 85–104 | Zbl

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[5] Zhikov V.V., “Ob odnom podkhode k razreshimosti obobschennykh uravnenii Nave–Stoksa”, Funkts. analiz i ego pril., 43:3 (2009), 33–53 | DOI | MR | Zbl

[6] Pastukhova S.E., “Compensated compactness principle and solvability of generalized Navier–Stokes equations”, J. Math. Sci., 173:6 (2011), 769–802 | DOI | MR | Zbl

[7] Diening L., Růžička M., Wolf J., “Existence of weak solutions for unsteady motions of generalized Newtonian fluids”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 5, 9 (2010), 1–46 | MR | Zbl

[8] Diening L., Málek J., Steinhauer M., “On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications”, ESAIM: Control Optim. Calc. Var., 14:2 (2008), 211–232 | DOI | MR | Zbl

[9] Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR

[10] Boccardo L., Gallouët T., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[11] Struwe M., “On partial regularity results for the Navier–Stokes equations”, Commun. Pure Appl. Math., 41 (1988), 437–458 | DOI | MR | Zbl

[12] Frehse J., Růžička M., “Existence of regular solutions to the steady Navier–Stokes equations in bounded six-dimensional domains”, Ann. Scuola Norm. Supe. Pisa. Cl. Sci. Ser. 4, 23 (1996), 701–719 | MR | Zbl

[13] Zhikov V.V., “K tekhnike predelnogo perekhoda v nelineinykh ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 43:2 (2009), 19–38 | DOI | MR | Zbl

[14] Zhikov V.V., Pastukhova S.E., “O printsipe kompensirovannoi kompaktnosti”, DAN, 433:5 (2010), 590–595 | MR | Zbl

[15] Pastukhova S., “Zhikov's hydromechanical lemma on compensated compactness: its extension and application to generalised stationary Navier–Stokes equations”, Complex Var. Elliptic Eqns., 56 (2011), 697–714 | DOI | MR | Zbl

[16] Evans L.K., Gariepi R.F., Teoriya mery i tonkie svoistva funktsii, Nauch. kn., Novosibirsk, 2002

[17] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[18] DiBenedetto E., Degenerate parabolic equations, Springer, New York, 1993 | MR

[19] Zhikov V.V., Pastukhova S.E., “Lemmy o kompensirovannoi kompaktnosti v ellipticheskikh i parabolicheskikh uravneniyakh”, Tr. MIAN, 270, 2010, 110–137 | MR | Zbl

[20] Wolf J., “Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity”, J. Math. Fluid Mech., 9 (2007), 104–138 | DOI | MR | Zbl

[21] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[22] Galdi G.P., An introduction to the mathematical theory of the Navier–Stokes equations. V. 1: Linearized steady problems, Springer, New York, 1994 | MR

[23] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Springer, New York, 2001 | MR | Zbl

[24] Giaquinta M., Introduction to regularity theory for nonlinear elliptic systems, Lect. Math., Birkhäuser, Basel, 1993 | MR | Zbl

[25] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[26] Bogovskii M.E., “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, DAN SSSR, 248:5 (1979), 1037–1040 | MR

[27] Diening L., Růžička M., “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics”, J. reine angew. Math., 563 (2003), 197–220 | MR | Zbl

[28] Cruz-Uribe D., Fiorenza A., Martell J.M., Pérez C., “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 239–264 | MR | Zbl

[29] Pedregal P., Parametrized measures and variational principles, Prog. Nonlin. Diff. Eqns. Appl., 30, Birkhäuser, Basel, 1997 | MR | Zbl

[30] Zhikov V.V., “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Problemy mat. analiza, 54 (2011), 23–112 | MR | Zbl

[31] Zhang K., “Biting theorems for Jacobians and their applications”, Ann. Inst. H. Poincaré. Anal. non lin., 7:4 (1990), 345–365 | MR | Zbl