Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_278_a20, author = {Yu. L. Sachkov}, title = {Closed {Euler} elasticae}, journal = {Informatics and Automation}, pages = {227--241}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a20/} }
Yu. L. Sachkov. Closed Euler elasticae. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 227-241. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a20/
[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Springer, Berlin, 2004 | MR | Zbl | Zbl
[2] Ardentov A.A., Sachkov Yu.L., “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202 (2011), 1593–1615 | DOI | DOI | MR | Zbl
[3] Arnold V.I., Kozlov V.V., Neishtadt A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2009
[4] Born M., Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, Diss., Dieterich, Göttingen, 1906; Ausgewählte Abhandlungen. Mit einem Verzeichnis der wissenschaftlichen Schriften, Bd. 1, Vandenhoeck und Ruprecht, Göttingen, 1963, 5–101
[5] Euler L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive Solutio problematis isoperimitrici latissimo sensu accepti, Marcum-Michaelem Bousquet socios, Lausannæ, Genevæ, 1744
[6] Griffiths P.A., Exterior differential systems and the calculus of variations, Birkhäuser, Boston, 1983 | MR | Zbl
[7] Jurdjevic V., “The geometry of the plate–ball problem”, Arch. Ration. Mech. Anal., 124 (1993), 305–328 | DOI | MR | Zbl
[8] Jurdjevic V., Geometric control theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[9] Langer J., Singer D.A., “Curve straightening and a minimax argument for closed elastic curves”, Topology., 24:1 (1985), 75–88 | DOI | MR | Zbl
[10] Love A.E.H., A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | Zbl
[11] Mashtakov A.P., Sachkov Yu.L., “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Sb. Math., 202 (2011), 1347–1371 | DOI | DOI | MR | Zbl
[12] Mumford D., “Elastica and computer vision”, Algebraic geometry and its applications, Ed. by C.L. Bajaj, Springer, New York, 1994, 491–506 | DOI | MR | Zbl
[13] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, J. Wiley Sons, New York, 1962 | MR | Zbl
[14] Saalschütz L., Der belastete Stab unter Einwirkung einer seitlichen Kraft, Teubner, Leipzig, 1880 | Zbl
[15] Sachkov Yu.L., “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234, arXiv: 0705.0614v1 [math.OC] | DOI | MR | Zbl
[16] Sachkov Yu.L., “Conjugate points in the Euler elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439, arXiv: 0705.1003v1 [math.OC] | DOI | MR | Zbl
[17] Sachkov Yu.L., “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201 (2010), 1029–1051 | DOI | DOI | MR | Zbl
[18] Timoshenko S.P., History of strength of materials, McGraw-Hill, New York, 1953 | Zbl
[19] Truesdell C., “The influence of elasticity on analysis: The classic heritage”, Bull. Amer. Math. Soc., 9:3 (1983), 293–310 | DOI | MR | Zbl
[20] Whittaker E.T., Watson G.N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[21] Wolfram S., Mathematica: A system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1991