Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_278_a19, author = {L. I. Rodina}, title = {The space $\mathrm{clcv}(\mathbb R^n)$ with the {Hausdorff--Bebutov} metric and statistically invariant sets of control systems}, journal = {Informatics and Automation}, pages = {217--226}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a19/} }
TY - JOUR AU - L. I. Rodina TI - The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems JO - Informatics and Automation PY - 2012 SP - 217 EP - 226 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a19/ LA - ru ID - TRSPY_2012_278_a19 ER -
%0 Journal Article %A L. I. Rodina %T The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems %J Informatics and Automation %D 2012 %P 217-226 %V 278 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a19/ %G ru %F TRSPY_2012_278_a19
L. I. Rodina. The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 217-226. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a19/
[1] Rodina L.I., Tonkov E.L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288
[2] Panasenko E.A., Rodina L.I., Tonkov E.L., “Asimptoticheski ustoichivye statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 135–142 | MR
[3] Rodina L.I., Tonkov E.L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestn. Udm. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2011, no. 1, 67–86
[4] Panasenko E.A., Tonkov E.L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. MIAN, 262, 2008, 202–221 | MR | Zbl
[5] Panasenko E.A., Tonkov E.L., “Rasprostranenie teorem E.A. Barbashina i N.N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201
[6] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[7] Panasenko E.A., Rodina L.I., Tonkov E.L., “Prostranstvo $\mathrm {clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177
[8] Nemytskii V.V., Stepanov V.V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhteorizdat, M., 1949
[9] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[10] Blagodatskikh V.I., Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, 1985, 194–252 | MR | Zbl
[11] Perov A.I., “Neskolko zamechanii otnositelno differentsialnykh neravenstv”, Izv. vuzov. Matematika, 1965, no. 4, 104–112 | MR | Zbl
[12] Chaplygin S.A., “Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii”, Izbrannye trudy. Mekhanika zhidkosti i gaza. Matematika. Obschaya mekhanika, Nauka, M., 1976, 307–360 | MR
[13] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl