Equations of liquid filtration in double porosity media as a~reiterated homogenization of Stokes equations
Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 161-169
Voir la notice de l'article provenant de la source Math-Net.Ru
An exact double porosity model for the liquid filtration in an absolutely rigid body is derived from homogenization theory. The governing equations of fluid dynamics on the microscopic level consist of the stationary Stokes system for a slightly compressible viscous fluid filling voids in a solid skeleton. In turn, this domain (voids) is a union of two independent periodic systems of cracks (fissures) and pores. We suppose that the dimensionless size $\delta$ of pores depends on the dimensionless size $\varepsilon$ of cracks: $\delta=\varepsilon^r$ with $r>1$. As a result we derive the usual Darcy equations of filtration for the liquid in cracks, while the liquid in pores is blocked and unmoved.
@article{TRSPY_2012_278_a14,
author = {Anvarbek Meirmanov},
title = {Equations of liquid filtration in double porosity media as a~reiterated homogenization of {Stokes} equations},
journal = {Informatics and Automation},
pages = {161--169},
publisher = {mathdoc},
volume = {278},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a14/}
}
TY - JOUR AU - Anvarbek Meirmanov TI - Equations of liquid filtration in double porosity media as a~reiterated homogenization of Stokes equations JO - Informatics and Automation PY - 2012 SP - 161 EP - 169 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a14/ LA - ru ID - TRSPY_2012_278_a14 ER -
%0 Journal Article %A Anvarbek Meirmanov %T Equations of liquid filtration in double porosity media as a~reiterated homogenization of Stokes equations %J Informatics and Automation %D 2012 %P 161-169 %V 278 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a14/ %G ru %F TRSPY_2012_278_a14
Anvarbek Meirmanov. Equations of liquid filtration in double porosity media as a~reiterated homogenization of Stokes equations. Informatics and Automation, Differential equations and dynamical systems, Tome 278 (2012), pp. 161-169. http://geodesic.mathdoc.fr/item/TRSPY_2012_278_a14/