Geometry of neighborhoods of singular trajectories in problems with multidimensional control
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 74-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the order of a singular trajectory in problems with multidimensional control is described by a flag of linear subspaces in the control space. In terms of this flag, we construct necessary conditions for the junction of a nonsingular trajectory with a singular one in affine control systems. We also give examples of multidimensional problems in which the optimal control has the form of an irrational winding of a torus that is passed in finite time.
@article{TRSPY_2012_277_a5,
     author = {M. I. Zelikin and L. V. Lokutsievskiy and R. Hildebrand},
     title = {Geometry of neighborhoods of singular trajectories in problems with multidimensional control},
     journal = {Informatics and Automation},
     pages = {74--90},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a5/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - L. V. Lokutsievskiy
AU  - R. Hildebrand
TI  - Geometry of neighborhoods of singular trajectories in problems with multidimensional control
JO  - Informatics and Automation
PY  - 2012
SP  - 74
EP  - 90
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a5/
LA  - ru
ID  - TRSPY_2012_277_a5
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A L. V. Lokutsievskiy
%A R. Hildebrand
%T Geometry of neighborhoods of singular trajectories in problems with multidimensional control
%J Informatics and Automation
%D 2012
%P 74-90
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a5/
%G ru
%F TRSPY_2012_277_a5
M. I. Zelikin; L. V. Lokutsievskiy; R. Hildebrand. Geometry of neighborhoods of singular trajectories in problems with multidimensional control. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 74-90. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a5/

[1] Goh B.S., “The second variation for the singular Bolza problem”, SIAM J. Control., 4 (1966), 127–168 | DOI | MR

[2] Krener A.J., “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optim., 15 (1977), 256–293 | DOI | MR | Zbl

[3] Kelley H.J., Kopp R.E., Moyer H.G., “Singular extremals”, Topics in optimization, Academic Press, New York, 1967, 63–101 | DOI | MR

[4] Lewis R.M., “Definitions of order and junction conditions in singular optimal control problems”, SIAM J. Control Optim., 18 (1980), 21–32 | DOI | MR | Zbl

[5] Lokutsievskii L.V., “Optimalnyi veroyatnostnyi poisk”, Mat. sb., 202:5 (2011), 77–100 | DOI | MR

[6] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[7] Agrachev A.A., Gamkrelidze R.V., “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Mat. sb., 100:4 (1976), 610–643 | MR | Zbl

[8] Milyutin A.A., Ilyutovich A.E., Osmolovskii N.P., Chukanov S.V., Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993 | MR | Zbl

[9] Zarisskii O., Samyuel P., Kommutativnaya algebra, T. 1., Izd-vo inostr. lit., M., 1963