Game problem of controlling three dynamical systems with fixed final times
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-player game is considered in which the first and second players have dynamic superiority over the third player. Two fixed time points are specified. The game ends if either the first player captures the third player at the first time point, or the second player captures the third player at the second time point. We analyze a situation when the initial positions in the game are such that neither the first nor the second player alone can capture the third player at the specified points of time. We propose sufficient conditions on the parameters of the game under which, for given initial states of the players, the first and second players by applying some controls can guarantee that one of them will meet the third player at the prescribed moment. Simulation results for a model example are also presented.
@article{TRSPY_2012_277_a3,
     author = {N. L. Grigorenko},
     title = {Game problem of controlling three dynamical systems with fixed final times},
     journal = {Informatics and Automation},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a3/}
}
TY  - JOUR
AU  - N. L. Grigorenko
TI  - Game problem of controlling three dynamical systems with fixed final times
JO  - Informatics and Automation
PY  - 2012
SP  - 49
EP  - 56
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a3/
LA  - ru
ID  - TRSPY_2012_277_a3
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%T Game problem of controlling three dynamical systems with fixed final times
%J Informatics and Automation
%D 2012
%P 49-56
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a3/
%G ru
%F TRSPY_2012_277_a3
N. L. Grigorenko. Game problem of controlling three dynamical systems with fixed final times. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 49-56. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a3/

[1] Mischenko E.F., Pontryagin L.S., “Lineinye differentsialnye igry”, DAN SSSR, 174:1 (1967), 27–29

[2] Pontryagin L.S., Mischenko E.F., “Zadacha ob uklonenii ot vstrechi v lineinykh differentsialnykh igrakh”, Dif. uravneniya, 7:3 (1971), 436–445 | Zbl

[3] Mischenko E.F., Nikolskii M.S., Satimov N.Yu., “Zadacha ukloneniya ot vstrechi v differentsialnykh igrakh mnogikh lits”, Tr. MIAN, 143, 1977, 105–128 | MR

[4] Pontryagin L.S., “Lineinaya differentsialnaya igra ubeganiya”, Tr. MIAN, 112 (1971), 30–63 | Zbl

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[6] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011

[7] Pshenichnyi B.N., Ostapenko V.V., Differentsialnye igry, Nauk. dumka, Kiev, 1992 | MR

[8] Nikolskii M.S., Pervyi pryamoi metod L.S. Pontryagina v differentsialnykh igrakh, Izd-vo MGU, M., 1984 | Zbl

[9] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990

[10] Chikrii A.A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992

[11] Lukyanova L.N., Zadacha ukloneniya ot stolknoveniya: Lineinaya teoriya i prilozheniya, Maks Press, M., 2009

[12] Braison A., Kho Yu-Shi., Prikladnaya teoriya optimalnogo upravleniya: Optimizatsiya, otsenka i upravlenie, Mir, M., 1972

[13] Shima T., Shinar J., “Time-varying linear pursuit–evasion game models with bounded controls”, J. Guid. Control Dyn., 25:3 (2002), 425–432 | DOI | MR

[14] Ganebny S.A., Krasov A.I., Patsko V.S., Smolnikova M.A., “Problem of vertical passing an obstacle by an aircraft under wind disturbances”, Proc. European Control Conference 2009 (Budapest (Hungary), Aug. 23–26), 2009, 103–108

[15] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 2, 25–32 | Zbl