Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_277_a2, author = {A. I. Bufetov and A. V. Klimenko}, title = {Maximal inequality and ergodic theorems for {Markov} groups}, journal = {Informatics and Automation}, pages = {33--48}, publisher = {mathdoc}, volume = {277}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/} }
A. I. Bufetov; A. V. Klimenko. Maximal inequality and ergodic theorems for Markov groups. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 33-48. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/
[1] Bowen L., “Invariant measures on the space of horofunctions of a word hyperbolic group”, Ergodic Theory Dyn. Syst., 30:1 (2010), 97–129 | DOI | MR | Zbl
[2] Bowen L., Nevo A., Geometric covering arguments and ergodic theorems for free groups, E-print, 2009, arXiv: 0912.4953v2 [math.DS] | MR
[3] Bufetov A.I., “Ergodicheskie teoremy dlya deistvii neskolkikh otobrazhenii”, UMN, 54:4 (1999), 159–160 | DOI | MR | Zbl
[4] Bufetov A.I., “Operatornye ergodicheskie teoremy dlya deistvii svobodnykh polugrupp i grupp”, Funkts. analiz i ego pril., 34:4 (2000), 1–17 | DOI | MR | Zbl
[5] Bufetov A.I., “Markov averaging and ergodic theorems for several operators”, Topology, ergodic theory, real algebraic geometry: Rokhlin's memorial, AMS Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001, 39–50 | MR | Zbl
[6] Bufetov A.I., “Convergence of spherical averages for actions of free groups”, Ann. Math. Ser. 2, 155 (2002), 929–944 | DOI | MR | Zbl
[7] Bufetov A.I., Khristoforov M., Klimenko A., “Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups”, Int. Math. Res. Not., 2011 | DOI | MR
[8] Bufetov A.I., Series C., “A pointwise ergodic theorem for Fuchsian groups”, Math. Proc. Cambridge Philos. Soc., 151 (2011), 145–159 | DOI | MR | Zbl
[9] Calegari D., Fujiwara K., “Combable functions, quasimorphisms, and the central limit theorem”, Ergodic Theory Dyn. Syst., 30:5 (2010), 1343–1369 | DOI | MR | Zbl
[10] Cannon J.W., “The combinatorial structure of cocompact discrete hyperbolic groups”, Geom. Dedicata, 16:2 (1984), 123–148 | DOI | MR | Zbl
[11] Dunford N., Schwartz J.T., Linear operators. Part I: General theory, Applied Mathematics, 7, Interscience, New York, 1958 | MR | Zbl
[12] Fujiwara K., Nevo A., “Maximal and pointwise ergodic theorems for word-hyperbolic groups”, Ergodic Theory Dyn. Syst., 18:4 (1998), 843–858 | DOI | MR | Zbl
[13] Sur les groupes hyperboliques d'après Mikhael Gromov, Prog. Math., 83, Ed. by É. Ghys, P. de la Harpe, Birkhäuser, Boston, 1990 | MR | Zbl
[14] Grigorchuk R.I., “Individualnaya ergodicheskaya teorema dlya deistvii svobodnykh grupp”, Tez. dokl. XII Shkoly po teorii operatorov v funktsionalnykh prostranstvakh, Ch. 1, Tambov, 1987, 57
[15] Grigorchuk R.I., “Ergodicheskie teoremy dlya deistvii svobodnoi gruppy i svobodnoi polugruppy”, Mat. zametki, 65:5 (1999), 779–783 | DOI | MR | Zbl
[16] Grigorchuk R.I., “Ergodicheskaya teorema dlya deistvii svobodnoi polugruppy”, Tr. MIAN, 231, 2000, 119–133 | MR | Zbl
[17] Gromov M., “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR
[18] Nevo A., “Harmonic analysis and pointwise ergodic theorems for noncommuting transformations”, J. Amer. Math. Soc., 7:4 (1994), 875–902 | DOI | MR | Zbl
[19] Nevo A., “Pointwise ergodic theorems for actions of groups”, Handbook of dynamical systems, V. 1B, Elsevier, Amsterdam, 2006, 871–982 | DOI | MR | Zbl
[20] Nevo A., Stein E.M., “A generalization of Birkhoff's pointwise ergodic theorem”, Acta math., 173 (1994), 135–154 | DOI | MR | Zbl
[21] Pollicott M., Sharp R., “Ergodic theorems for actions of hyperbolic groups”, Proc. Amer. Math. Soc. (to appear) | MR