Maximal inequality and ergodic theorems for Markov groups
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 33-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that for actions of Markov semigroups, in particular, of finitely generated word hyperbolic groups, the Cesàro means of spherical averages converge almost everywhere for any function from the class $L^p$, $p>1$.
@article{TRSPY_2012_277_a2,
     author = {A. I. Bufetov and A. V. Klimenko},
     title = {Maximal inequality and ergodic theorems for {Markov} groups},
     journal = {Informatics and Automation},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - A. V. Klimenko
TI  - Maximal inequality and ergodic theorems for Markov groups
JO  - Informatics and Automation
PY  - 2012
SP  - 33
EP  - 48
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/
LA  - ru
ID  - TRSPY_2012_277_a2
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A A. V. Klimenko
%T Maximal inequality and ergodic theorems for Markov groups
%J Informatics and Automation
%D 2012
%P 33-48
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/
%G ru
%F TRSPY_2012_277_a2
A. I. Bufetov; A. V. Klimenko. Maximal inequality and ergodic theorems for Markov groups. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 33-48. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a2/