On the problem of control for ellipsoidal motions
Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 168-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the problem of target control for systems with ellipsoidal-valued trajectories that are allowed to be reconfigured throughout their motion. The solutions are proposed for linear-convex systems and are given both in the open-loop (programmed) form and in the form of closed-loop (feedback) strategies. The techniques are based on methods of nonlinear analysis and the Hamiltonian formalism, including matrix-valued dynamic programming equations for such systems.
@article{TRSPY_2012_277_a10,
     author = {A. B. Kurzhanski},
     title = {On the problem of control for ellipsoidal motions},
     journal = {Informatics and Automation},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a10/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
TI  - On the problem of control for ellipsoidal motions
JO  - Informatics and Automation
PY  - 2012
SP  - 168
EP  - 177
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a10/
LA  - ru
ID  - TRSPY_2012_277_a10
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%T On the problem of control for ellipsoidal motions
%J Informatics and Automation
%D 2012
%P 168-177
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a10/
%G ru
%F TRSPY_2012_277_a10
A. B. Kurzhanski. On the problem of control for ellipsoidal motions. Informatics and Automation, Mathematical control theory and differential equations, Tome 277 (2012), pp. 168-177. http://geodesic.mathdoc.fr/item/TRSPY_2012_277_a10/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[3] Bellman R., Kalaba R., Dinamicheskoe programmirovanie i sovremennaya teoriya upravleniya, Nauka, M., 1969 | Zbl

[4] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[5] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer, New York, 2004 | MR

[6] Aubin J.-P., Viability theory, Birkhäuser, Boston, 1991 | MR | Zbl

[7] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl

[8] Kurzhanski A.B., Filippova T.F., “On the theory of trajectory tubes—a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: A report from Russia, Prog. Syst. Control Theory, 17, Birkhäuser, Boston, 1993, 122–188 | MR

[9] Blanchini F., Miani S., Set-theoretic methods in control, Birkhäuser, Boston, 2008 | MR | Zbl

[10] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[11] Krasovskii A.N., Krasovskii N.N., Control under lack of information, Birkhäuser, Boston, 1995 | MR

[12] Kurzhanskii A.B., “O sinteze upravlenii po rezultatam izmerenii”, PMM, 68:4 (2004), 547–563 | MR

[13] Chernousko F.L., State estimation for dynamic systems, CRC Press, Boca Raton, FL, 1993

[14] Kurzhanski A.B., Varaiya P., “Optimization of output feedback control under set-membership uncertainty”, J. Optim. Theory Appl., 151:1 (2011), 11–32 | DOI | MR | Zbl

[15] Kurzhanskii A.B., “Zadacha upravleniya gruppovym dvizheniem. Obschie sootnosheniya”, DAN, 426:1 (2009), 20–25 | MR

[16] Kurzhanski A.B, Varaiya P., “On synthesizing team target controls under obstacles and collision avoidance”, J. Franklin Inst., 347:1 (2010), 130–145 | DOI | MR

[17] Kurzhanski A.B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR | Zbl

[18] Chebunin I.V., “Usloviya upravlyaemosti dlya uravneniya Rikkati”, Dif. uravneniya, 39:12 (2003), 1654–1661 | MR | Zbl

[19] Crandall M.G., Evans L.C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282:2 (1984), 487–502 | DOI | MR | Zbl

[20] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., M.; Izhevsk, 2003

[21] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl

[22] Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[23] Gusev M.I., Kurzhanskii A.B., “K optimizatsii upravlyaemykh sistem pri nalichii ogranichenii. I, II”, Dif. uravneniya, 7:9 (1971), 1591–1602 ; 10, 1789–1800 | MR | Zbl | Zbl

[24] Riesz F., Sz.-Nagy B., Leçons d'analyse fonctionnelle, Akad. Kiado, Budapest, 1972

[25] Fan K., “Minimax theorems”, Proc. Natl. Acad. Sci. USA, 39:1 (1953), 42–47 | DOI | MR | Zbl

[26] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[27] Kurzhanskii A.B., Nikonov O.I., “Evolyutsionnye uravneniya dlya puchkov traektorii sintezirovannykh sistem upravleniya”, DAN, 333:5 (1993), 578–581 | MR