Identities involving Farey fractions
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145
Voir la notice de l'article provenant de la source Math-Net.Ru
The rational numbers $a/q$ in $[0,1]$ can be counted by increasing height $H(a/q)=\max(a,q)$, or ordered as real numbers. Franel's identity shows that the Riemann hypothesis is equivalent to a strong bound for a measure of the independence of these two orderings. We give a proof using Dedekind sums that allows weights $w(q)$. Taking $w(q)=\chi(q)$ we find an extension to Dirichlet L-functions.
@article{TRSPY_2012_276_a9,
author = {M. N. Huxley},
title = {Identities involving {Farey} fractions},
journal = {Informatics and Automation},
pages = {131--145},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a9/}
}
M. N. Huxley. Identities involving Farey fractions. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 131-145. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a9/