Application of an idea of Vorono\u\i\ to lattice zeta functions
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 109-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A major problem in the geometry of numbers is the investigation of the local minima of the Epstein zeta function. In this article refined minimum properties of the Epstein zeta function and more general lattice zeta functions are studied. Using an idea of Voronoĭ, characterizations and sufficient conditions are given for lattices at which the Epstein zeta function is stationary or quadratic minimum. Similar problems of a duality character are investigated for the product of the Epstein zeta function of a lattice and the Epstein zeta function of the polar lattice. Besides Voronoĭ type notions such as versions of perfection and eutaxy, these results involve spherical designs and automorphism groups of lattices. Several results are extended to more general lattice zeta functions, where the Euclidean norm is replaced by a smooth norm.
@article{TRSPY_2012_276_a8,
     author = {Peter M. Gruber},
     title = {Application of an idea of {Vorono\u\i\} to lattice zeta functions},
     journal = {Informatics and Automation},
     pages = {109--130},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a8/}
}
TY  - JOUR
AU  - Peter M. Gruber
TI  - Application of an idea of Vorono\u\i\ to lattice zeta functions
JO  - Informatics and Automation
PY  - 2012
SP  - 109
EP  - 130
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a8/
LA  - en
ID  - TRSPY_2012_276_a8
ER  - 
%0 Journal Article
%A Peter M. Gruber
%T Application of an idea of Vorono\u\i\ to lattice zeta functions
%J Informatics and Automation
%D 2012
%P 109-130
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a8/
%G en
%F TRSPY_2012_276_a8
Peter M. Gruber. Application of an idea of Vorono\u\i\ to lattice zeta functions. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 109-130. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a8/

[1] Ash A., “On eutactic forms”, Can. J. Math., 29 (1977), 1040–1054 | DOI | MR | Zbl

[2] Ash A., “On the existence of eutactic forms”, Bull. London Math. Soc., 12 (1980), 192–196 | DOI | MR | Zbl

[3] Bachoc C., Venkov B., “Modular forms, lattices and spherical designs”, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Geneva, 2001, 87–111 | MR | Zbl

[4] Barnes E.S., Dickson T.J., “Extreme coverings of $n$-space by spheres”, J. Aust. Math. Soc., 7 (1967), 115–127 | DOI | MR

[5] Bavard C., “Systole et invariant d'Hermite”, J. reine angew. Math., 482 (1997), 93–120 | MR | Zbl

[6] Bavard C., “Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues”, Bull. Soc. math. France, 133 (2005), 205–257 | MR | Zbl

[7] Bergé A.-M., Martinet J., “Sur un problème de dualité lié aux sphères en géométrie des nombres”, J. Number Theory, 32 (1989), 14–42 | DOI | MR | Zbl

[8] Bergé A.-M., Martinet J., “Sur la classification des réseaux eutactiques”, J. London Math. Soc. Ser. 2, 53 (1996), 417–432 | DOI | MR | Zbl

[9] Cassels J.W.S., “On a problem of Rankin about the Epstein zeta-function”, Proc. Glasg. Math. Assoc., 4 (1959), 73–80 | DOI | MR | Zbl

[10] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, With additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen and B.B. Venkov, Grundl. math. Wissensch., 290, 3rd ed., Springer, New York, 1999 | DOI | MR | Zbl

[11] Coulangeon R., “Spherical designs and zeta functions of lattices”, Intern. Math. Res. Not., 2006, no. 25, 49620 | MR | Zbl

[12] Delone B.N., Dolbilin N.P., Ryškov S.S., Štogrin M.I., “A new construction in the theory of lattice coverings of an $n$-dimensional space by equal spheres”, Math. USSR. Izv., 4:2 (1970), 293–302 | DOI | MR | Zbl | Zbl

[13] Delone B.N., Ryshkov S.S., “A contribution to the theory of the extrema of a multidimensional $\zeta $-function”, Sov. Math. Dokl., 8 (1967), 499–503 | MR | Zbl

[14] Engel P., “Geometric crystallography”, Handbook of convex geometry, B, North-Holland, Amsterdam, 1993, 989–1041 | DOI | MR | Zbl

[15] Ennola V., “On a problem about the Epstein zeta-function”, Proc. Cambridge Philos. Soc., 60 (1964), 855–875 | DOI | MR | Zbl

[16] Erdős P., Gruber P.M., Hammer J., Lattice points, Longman Scientific Technical, Harlow, 1989

[17] Goethals J.M., Seidel J.J., “Spherical designs”, Relations between combinatorics and other parts of mathematics, Proc. Symp. Pure Math., Columbus, 1978, Proc. Symp. Pure Math., 34, Amer. Math. Soc., Providence, RI, 1979, 255–272 | DOI | MR

[18] Gruber P.M., “Minimal ellipsoids and their duals”, Rend. Circ. Mat. Palermo. Ser. 2, 37 (1988), 35–64 | DOI | MR | Zbl

[19] Gruber P.M., Convex and discrete geometry, Grundl. math. Wissensch., 336, Springer, Berlin, 2007 | MR | Zbl

[20] Gruber P.M., “Application of an idea of Voronoĭ to John type problems”, Adv. Math., 218 (2008), 309–351 | DOI | MR | Zbl

[21] Gruber P.M., “Voronoĭ type criteria for lattice coverings with balls”, Acta arith., 149 (2011), 371–381 | DOI | MR | Zbl

[22] Gruber P.M., “John and Loewner ellipsoids”, Discrete Comput. Geom., 46:4 (2011), 776–788 | DOI | MR | Zbl

[23] Gruber P.M., “Uniqueness of lattice packings and coverings of extreme density”, Adv. Geom., 11:4 (2011), 691–710 | DOI | MR | Zbl

[24] Proc. Steklov Inst. Math., 275 (2011), 229–238 | DOI | MR

[25] Gruber P.M., “Application of an idea of Voronoĭ to lattice packing”, Submitted

[26] Gruber P.M., “Application of an idea of Voronoĭ, a report”, Geometry—intuitive, discrete, and convex, Bolyai Soc. Math. Stud., 24, Springer, Berlin (to appear)

[27] Gruber P.M., Lekkerkerker C.G., Geometry of numbers, 2nd ed., North-Holland, Amsterdam, 1987 ; Gruber P.M., Lekkerkerker K.G., Geometriya chisel, Nauka, M., 2008 | MR | Zbl | Zbl

[28] Gruber P.M., Schuster F.E., “An arithmetic proof of John's ellipsoid theorem”, Arch. Math., 85 (2005), 82–88 | DOI | MR | Zbl

[29] Lim S.C., Teo L.P., “On the minima and convexity of Epstein zeta function”, J. Math. Phys., 49:7 (2008), 073513 | DOI | MR | Zbl

[30] Martinet J., Perfect lattices in Euclidean spaces, Grundl. math. Wissensch.;, 325, Springer, Berlin, 2003 | DOI | MR

[31] Montgomery H.L., “Minimal theta functions”, Glasg. Math. J., 30 (1988), 75–85 | DOI | MR | Zbl

[32] Rankin R.A., “A minimum problem for the Epstein zeta-function”, Proc. Glasg. Math. Assoc., 1 (1953), 149–158 | DOI | MR | Zbl

[33] Ryshkov S.S., “On the question of final $\zeta $-optimality of lattices providing the closest lattice packing of $n$-dimensional spheres”, Sib. Math. J., 14 (1974), 743–750 | DOI | Zbl | Zbl

[34] Sarnak P., Strömbergsson A., “Minima of Epstein's zeta function and heights of flat tori”, Invent. math., 165 (2006), 115–151 | DOI | MR | Zbl

[35] Schmutz P., “Riemann surfaces with shortest geodesic of maximal length”, Geom. Funct. Anal., 3 (1993), 564–631 | DOI | MR | Zbl

[36] Schmutz P., “Systoles on Riemann surfaces”, Manuscr. math., 85 (1994), 429–447 | DOI | MR | Zbl

[37] Schmutz Schaller P., “Geometry of Riemann surfaces based on closed geodesics”, Bull. Amer. Math. Soc., 35 (1998), 193–214 | DOI | MR | Zbl

[38] Schmutz Schaller P., “Perfect non-extremal Riemann surfaces”, Can. Math. Bull., 43 (2000), 115–125 | DOI | MR | Zbl

[39] Schneider R., Convex bodies: The Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | MR

[40] Schürmann A., Computational geometry of positive definite quadratic forms: Polyhedral reduction theories, algorithms, and applications, Amer. Math. Soc., Providence, RI, 2009 | MR

[41] Schürmann A., Vallentin F., “Computational approaches to lattice packing and covering problems”, Discrete Comput. Geom., 35 (2006), 73–116 | DOI | MR | Zbl

[42] Venkov B., “Réseaux et designs sphériques”, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Geneva, 2001, 10–86 | MR | Zbl

[43] Voronoï G., “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premièr mémoire: Sur quelques propriétés des formes quadratiques positives parfaites”, J. reine angew. Math., 133 (1908), 97–178 | Zbl

[44] Vorono\"{ı, “G.} Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire: Recherches sur les paralléloèdres primitifs. I, II”, J. reine und angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–181 | Zbl

[45] Voronoi G.F., Sobranie sochinenii, T. 1–3, Izd-vo AN UkrSSR, Kiev, 1952, 1953

[46] Zong C., Sphere packings, Springer, New York, 1999 | MR