On the remainder term in the circle problem in an arithmetic progression
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
@article{TRSPY_2012_276_a22,
     author = {D. I. Tolev},
     title = {On the remainder term in the circle problem in an arithmetic progression},
     journal = {Informatics and Automation},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On the remainder term in the circle problem in an arithmetic progression
JO  - Informatics and Automation
PY  - 2012
SP  - 266
EP  - 279
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/
LA  - en
ID  - TRSPY_2012_276_a22
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On the remainder term in the circle problem in an arithmetic progression
%J Informatics and Automation
%D 2012
%P 266-279
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/
%G en
%F TRSPY_2012_276_a22
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/

[1] Bombieri E., “On exponential sums in finite fields”, Amer. J. Math., 88 (1966), 71–105 | DOI | MR | Zbl

[2] Blomer V., “The average value of divisor sums in arithmetic progressions”, Quart. J. Math., 59 (2008), 275–286 | DOI | MR | Zbl

[3] Blomer V., Brüdern J., Dietmann R., “Sums of smooth squares”, Compos. math., 145 (2009), 1401–1441 | DOI | MR | Zbl

[4] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl

[5] Graham S.W., Kolesnik G., Van der Corput's method of exponential sums, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[6] Hooley C., Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, Cambridge, 1976 | MR

[7] Hua L.K., Introduction to number theory, Springer, Berlin, 1982 | MR | Zbl

[8] Iwaniec H., Kowalski E., Analytic number theory, Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[9] Smith R.A., “The circle problem in an arithmetic progression”, Can. Math. Bull., 11:2 (1968), 175–184 | DOI | MR | Zbl

[10] Ustinov A.V., “On the number of solutions of the congruence $xy\equiv l\pmod {q}$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20 (2009), 813–836 | DOI | MR | Zbl

[11] Varbanets P.D., “Lattice points in a circle whose distances from the center are in an arithmetic progression”, Math. Notes, 8 (1970), 917–923 | DOI | Zbl