On the remainder term in the circle problem in an arithmetic progression
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
@article{TRSPY_2012_276_a22,
     author = {D. I. Tolev},
     title = {On the remainder term in the circle problem in an arithmetic progression},
     journal = {Informatics and Automation},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On the remainder term in the circle problem in an arithmetic progression
JO  - Informatics and Automation
PY  - 2012
SP  - 266
EP  - 279
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/
LA  - en
ID  - TRSPY_2012_276_a22
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On the remainder term in the circle problem in an arithmetic progression
%J Informatics and Automation
%D 2012
%P 266-279
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/
%G en
%F TRSPY_2012_276_a22
D. I. Tolev. On the remainder term in the circle problem in an arithmetic progression. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 266-279. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a22/