@article{TRSPY_2012_276_a16,
author = {Jan Moser},
title = {Jacob's ladders, the structure of the {Hardy{\textendash}Littlewood} integral and some new class of nonlinear integral equations},
journal = {Informatics and Automation},
pages = {213--226},
year = {2012},
volume = {276},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/}
}
TY - JOUR AU - Jan Moser TI - Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations JO - Informatics and Automation PY - 2012 SP - 213 EP - 226 VL - 276 UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/ LA - en ID - TRSPY_2012_276_a16 ER -
Jan Moser. Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/
[1] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, Gostekhizdat, M., 1955; Fock V., The theory of space, time and gravitation, Pergamon Press, Oxford, 1963 | MR | Zbl
[2] Hardy G.H., Littlewood J.E., “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta math., 41:1 (1918), 119–196 | DOI | MR
[3] Hardy G.H., Littlewood J.E., “The approximate functional equation in the theory of the zeta-function, with applications to the divisor-problems of Dirichlet and Piltz”, Proc. London Math. Soc. Ser. 2, 21 (1922), 39–74 | DOI | MR
[4] Ingham A.E., “Mean-value theorems in the theory of the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 27 (1927), 273–300 | DOI | MR | Zbl
[5] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl
[6] Karatsuba A.A., Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[7] Littlewood J.E., “Two notes on the Riemann zeta-function”, Proc. Cambridge Philos. Soc., 22 (1924), 234–242 | DOI | Zbl
[8] Moser J., “Jacob's ladders and the almost exact asymptotic representation of the Hardy–Littlewood integral”, Math. Notes, 88 (2010), 414–422 | DOI | DOI | MR | Zbl
[9] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl
[10] Titchmarsh E.C., The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl