Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_276_a16, author = {Jan Moser}, title = {Jacob's ladders, the structure of the {Hardy--Littlewood} integral and some new class of nonlinear integral equations}, journal = {Informatics and Automation}, pages = {213--226}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/} }
TY - JOUR AU - Jan Moser TI - Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations JO - Informatics and Automation PY - 2012 SP - 213 EP - 226 VL - 276 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/ LA - en ID - TRSPY_2012_276_a16 ER -
%0 Journal Article %A Jan Moser %T Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations %J Informatics and Automation %D 2012 %P 213-226 %V 276 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/ %G en %F TRSPY_2012_276_a16
Jan Moser. Jacob's ladders, the structure of the Hardy--Littlewood integral and some new class of nonlinear integral equations. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/
[1] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, Gostekhizdat, M., 1955; Fock V., The theory of space, time and gravitation, Pergamon Press, Oxford, 1963 | MR | Zbl
[2] Hardy G.H., Littlewood J.E., “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta math., 41:1 (1918), 119–196 | DOI | MR
[3] Hardy G.H., Littlewood J.E., “The approximate functional equation in the theory of the zeta-function, with applications to the divisor-problems of Dirichlet and Piltz”, Proc. London Math. Soc. Ser. 2, 21 (1922), 39–74 | DOI | MR
[4] Ingham A.E., “Mean-value theorems in the theory of the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 27 (1927), 273–300 | DOI | MR | Zbl
[5] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl
[6] Karatsuba A.A., Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[7] Littlewood J.E., “Two notes on the Riemann zeta-function”, Proc. Cambridge Philos. Soc., 22 (1924), 234–242 | DOI | Zbl
[8] Moser J., “Jacob's ladders and the almost exact asymptotic representation of the Hardy–Littlewood integral”, Math. Notes, 88 (2010), 414–422 | DOI | DOI | MR | Zbl
[9] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl
[10] Titchmarsh E.C., The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl