Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain new formulae for short and microscopic parts of the Hardy–Littlewood integral, and the first asymptotic formula for the sixth-order expression $|\zeta(\frac12+i\varphi _1(t))|^4|\zeta(\frac 12+it)|^2$. These formulae cannot be obtained in the theories of Balasubramanian, Heath-Brown and Ivić.
@article{TRSPY_2012_276_a16,
     author = {Jan Moser},
     title = {Jacob's ladders, the structure of the {Hardy{\textendash}Littlewood} integral and some new class of nonlinear integral equations},
     journal = {Informatics and Automation},
     pages = {213--226},
     year = {2012},
     volume = {276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/}
}
TY  - JOUR
AU  - Jan Moser
TI  - Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations
JO  - Informatics and Automation
PY  - 2012
SP  - 213
EP  - 226
VL  - 276
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/
LA  - en
ID  - TRSPY_2012_276_a16
ER  - 
%0 Journal Article
%A Jan Moser
%T Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations
%J Informatics and Automation
%D 2012
%P 213-226
%V 276
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/
%G en
%F TRSPY_2012_276_a16
Jan Moser. Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 213-226. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a16/

[1] Fok V.A., Teoriya prostranstva, vremeni i tyagoteniya, Gostekhizdat, M., 1955; Fock V., The theory of space, time and gravitation, Pergamon Press, Oxford, 1963 | MR | Zbl

[2] Hardy G.H., Littlewood J.E., “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta math., 41:1 (1918), 119–196 | DOI | MR

[3] Hardy G.H., Littlewood J.E., “The approximate functional equation in the theory of the zeta-function, with applications to the divisor-problems of Dirichlet and Piltz”, Proc. London Math. Soc. Ser. 2, 21 (1922), 39–74 | DOI | MR

[4] Ingham A.E., “Mean-value theorems in the theory of the Riemann zeta-function”, Proc. London Math. Soc. Ser. 2, 27 (1927), 273–300 | DOI | MR | Zbl

[5] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl

[6] Karatsuba A.A., Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[7] Littlewood J.E., “Two notes on the Riemann zeta-function”, Proc. Cambridge Philos. Soc., 22 (1924), 234–242 | DOI | Zbl

[8] Moser J., “Jacob's ladders and the almost exact asymptotic representation of the Hardy–Littlewood integral”, Math. Notes, 88 (2010), 414–422 | DOI | DOI | MR | Zbl

[9] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl

[10] Titchmarsh E.C., The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl