Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2012_276_a15, author = {Ladislav Mi\v{s}{\'\i}k and Oto Strauch}, title = {Diophantine approximation generalized}, journal = {Informatics and Automation}, pages = {198--212}, publisher = {mathdoc}, volume = {276}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/} }
Ladislav Mišík; Oto Strauch. Diophantine approximation generalized. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 198-212. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/
[1] Berend D., Dubickas A., “Good points for diophantine approximation”, Proc. Indian Acad. Sci. Math. Sci., 119:4 (2009), 423–429 | DOI | MR | Zbl
[2] Bruckner A.M., Leonard J.L., “Derivatives”, Amer. Math. Mon., 73:4, Pt. 2 (1966), 24–56 | DOI | MR | Zbl
[3] Duffin R.J., Schaeffer A.C., “Khintchine's problem in metric diophantine approximation”, Duke Math. J., 8 (1941), 243–255 | DOI | MR
[4] Erdős P., “On the distribution of the convergents of almost all real numbers”, J. Number Theory, 2 (1970), 425–441 | DOI | MR | Zbl
[5] Fridy J.A., “Statistical limit points”, Proc. Amer. Math. Soc., 118:4 (1993), 1187–1192 | DOI | MR | Zbl
[6] Gallagher P.X., “Metric simultaneous diophantine approximation. II”, Mathematika, 12 (1965), 123–127 | DOI | MR | Zbl
[7] Giuliano Antonini R., Strauch O., “On weighted distribution functions of sequences”, Unif. Distrib. Theory, 3:1 (2008), 1–18 | MR | Zbl
[8] Harman G., Metric number theory, London Math. Soc. Monogr., 18, Clarendon Press, Oxford, 1998 | MR | Zbl
[9] Haynes A., Pollington A., Velani S., The Duffin–Schaeffer conjecture with extra divergence, E-print, 2008, arXiv: 0811.1234v3 [math.NT]
[10] Khintchine A., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl
[11] Kostyrko P., Mačaj M., Šalát T., Strauch O., “On statistical limit points”, Proc. Amer. Math. Soc., 129:9 (2001), 2647–2654 | DOI | MR | Zbl
[12] Kuipers L., Niederreiter H., Uniform distribution of sequences, J. Wiley Sons, New York, 1974 ; Dover Publ., Mineola, NY, 2006 | MR | Zbl
[13] Lesca J., Sur les approximations diophantiennes à une dimension, Doctoral Thesis, Univ. Grenoble, 1968
[14] Myerson G., “A sampler of recent developments in the distribution of sequences”, Number theory with an emphasis on the Markoff spectrum, Provo, UT, 1991, Lect. Notes Pure Appl. Math., 47, M. Dekker, New York, 1993, 163–190 | MR
[15] Niederreiter H., “On a measure of denseness for sequences”, Topics in classical number theory: Colloq. Budapest, 1981, V. 2, Colloq. Math. Soc. J. Bolyai, 34, eds. Ed. by G. Halász, North-Holland, Amsterdam, 1984, 1163–1208 | MR
[16] Ohkubo Y., “On sequences involving primes”, Unif. Distrib. Theory, 6:2 (2011), 221–238 | MR | Zbl
[17] Reversat M., “Un résultat de forte eutaxie”, C. r. Acad. sci. Paris A–B, 280 (1975), A53–A55 | MR
[18] Sprindzuk V.G., Metric theory of Diophantine approximations, V.H. Winston Sons, Washington, DC; J. Wiley Sons, New York, 1979 | MR | MR
[19] Strauch O., “Duffin–Schaeffer conjecture and some new types of real sequences”, Acta math. Univ. Comenianae, 40–41 (1982), 233–265 | MR | Zbl
[20] Strauch O., “A coherence between the diophantine approximations and the Dini derivates of some real functions”, Acta math. Univ. Comenianae, 42–43 (1983), 97–109 | MR | Zbl
[21] Strauch O., “Two properties of the sequence $n\alpha \pmod {1}$”, Acta math. Univ. Comenianae, 44–45 (1984), 67–73 | MR | Zbl
[22] Strauch O., “$L^2$ discrepancy”, Math. Slovaca, 44 (1994), 601–632 | MR | Zbl
[23] Strauch O., “Uniformly maldistributed sequences in a strict sense”, Monatsh. Math., 120 (1995), 153–164 | DOI | MR | Zbl
[24] Strauch O., Porubský Š., Distribution of sequences: A sampler, Peter Lang, Frankfurt am Main, 2005 | MR | Zbl
[25] Wintner A., “On the cyclical distribution of the logarithms of the prime numbers”, Q. J. Math. Oxford Ser., 6 (1935), 65–68 | DOI