Diophantine approximation generalized
Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 198-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the set of $x\in[0,1]$ for which the inequality $|x-x_n|$ holds for infinitely many $n=1,2,\dots$. Here $x_n\in[0,1)$ and $z_n>0$, $z_n\to0$, are sequences. In the first part of the paper we summarize known results. In the second part, using the theory of distribution functions of sequences, we find the asymptotic density of $n$ for which $|x-x_n|$, where $x$ is a discontinuity point of some distribution function of $x_n$. Generally, we also prove, for an arbitrary sequence $x_n$, that there exists $z_n$ such that the density of $n=1,2,\dots$, $x_n\to x$, is the same as the density of $n=1,2,\dots$, $|x-x_n|$, for $x\in[0,1]$. Finally we prove, using the longest gap $d_n$ in the finite sequence $x_1,x_2,\dots,x_n$, that if $d_n\le z_n$ for all $n$, $z_n\to0$, and $z_n$ is non-increasing, then $|x-x_n|$ holds for infinitely many $n$ and for almost all $x\in[0,1]$.
@article{TRSPY_2012_276_a15,
     author = {Ladislav Mi\v{s}{\'\i}k and Oto Strauch},
     title = {Diophantine approximation generalized},
     journal = {Informatics and Automation},
     pages = {198--212},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/}
}
TY  - JOUR
AU  - Ladislav Mišík
AU  - Oto Strauch
TI  - Diophantine approximation generalized
JO  - Informatics and Automation
PY  - 2012
SP  - 198
EP  - 212
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/
LA  - en
ID  - TRSPY_2012_276_a15
ER  - 
%0 Journal Article
%A Ladislav Mišík
%A Oto Strauch
%T Diophantine approximation generalized
%J Informatics and Automation
%D 2012
%P 198-212
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/
%G en
%F TRSPY_2012_276_a15
Ladislav Mišík; Oto Strauch. Diophantine approximation generalized. Informatics and Automation, Number theory, algebra, and analysis, Tome 276 (2012), pp. 198-212. http://geodesic.mathdoc.fr/item/TRSPY_2012_276_a15/

[1] Berend D., Dubickas A., “Good points for diophantine approximation”, Proc. Indian Acad. Sci. Math. Sci., 119:4 (2009), 423–429 | DOI | MR | Zbl

[2] Bruckner A.M., Leonard J.L., “Derivatives”, Amer. Math. Mon., 73:4, Pt. 2 (1966), 24–56 | DOI | MR | Zbl

[3] Duffin R.J., Schaeffer A.C., “Khintchine's problem in metric diophantine approximation”, Duke Math. J., 8 (1941), 243–255 | DOI | MR

[4] Erdős P., “On the distribution of the convergents of almost all real numbers”, J. Number Theory, 2 (1970), 425–441 | DOI | MR | Zbl

[5] Fridy J.A., “Statistical limit points”, Proc. Amer. Math. Soc., 118:4 (1993), 1187–1192 | DOI | MR | Zbl

[6] Gallagher P.X., “Metric simultaneous diophantine approximation. II”, Mathematika, 12 (1965), 123–127 | DOI | MR | Zbl

[7] Giuliano Antonini R., Strauch O., “On weighted distribution functions of sequences”, Unif. Distrib. Theory, 3:1 (2008), 1–18 | MR | Zbl

[8] Harman G., Metric number theory, London Math. Soc. Monogr., 18, Clarendon Press, Oxford, 1998 | MR | Zbl

[9] Haynes A., Pollington A., Velani S., The Duffin–Schaeffer conjecture with extra divergence, E-print, 2008, arXiv: 0811.1234v3 [math.NT]

[10] Khintchine A., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR | Zbl

[11] Kostyrko P., Mačaj M., Šalát T., Strauch O., “On statistical limit points”, Proc. Amer. Math. Soc., 129:9 (2001), 2647–2654 | DOI | MR | Zbl

[12] Kuipers L., Niederreiter H., Uniform distribution of sequences, J. Wiley Sons, New York, 1974 ; Dover Publ., Mineola, NY, 2006 | MR | Zbl

[13] Lesca J., Sur les approximations diophantiennes à une dimension, Doctoral Thesis, Univ. Grenoble, 1968

[14] Myerson G., “A sampler of recent developments in the distribution of sequences”, Number theory with an emphasis on the Markoff spectrum, Provo, UT, 1991, Lect. Notes Pure Appl. Math., 47, M. Dekker, New York, 1993, 163–190 | MR

[15] Niederreiter H., “On a measure of denseness for sequences”, Topics in classical number theory: Colloq. Budapest, 1981, V. 2, Colloq. Math. Soc. J. Bolyai, 34, eds. Ed. by G. Halász, North-Holland, Amsterdam, 1984, 1163–1208 | MR

[16] Ohkubo Y., “On sequences involving primes”, Unif. Distrib. Theory, 6:2 (2011), 221–238 | MR | Zbl

[17] Reversat M., “Un résultat de forte eutaxie”, C. r. Acad. sci. Paris A–B, 280 (1975), A53–A55 | MR

[18] Sprindzuk V.G., Metric theory of Diophantine approximations, V.H. Winston Sons, Washington, DC; J. Wiley Sons, New York, 1979 | MR | MR

[19] Strauch O., “Duffin–Schaeffer conjecture and some new types of real sequences”, Acta math. Univ. Comenianae, 40–41 (1982), 233–265 | MR | Zbl

[20] Strauch O., “A coherence between the diophantine approximations and the Dini derivates of some real functions”, Acta math. Univ. Comenianae, 42–43 (1983), 97–109 | MR | Zbl

[21] Strauch O., “Two properties of the sequence $n\alpha \pmod {1}$”, Acta math. Univ. Comenianae, 44–45 (1984), 67–73 | MR | Zbl

[22] Strauch O., “$L^2$ discrepancy”, Math. Slovaca, 44 (1994), 601–632 | MR | Zbl

[23] Strauch O., “Uniformly maldistributed sequences in a strict sense”, Monatsh. Math., 120 (1995), 153–164 | DOI | MR | Zbl

[24] Strauch O., Porubský Š., Distribution of sequences: A sampler, Peter Lang, Frankfurt am Main, 2005 | MR | Zbl

[25] Wintner A., “On the cyclical distribution of the logarithms of the prime numbers”, Q. J. Math. Oxford Ser., 6 (1935), 65–68 | DOI