Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The ring structure of Morava $K$-theory $K(s)^*(BG)$ for the 2-group no. 38 of order $32$ from the Hall–Senior list is calculated. Previously it was known that $K(s)^*(BG)$ is evenly generated and for $s=2$ is generated by Chern characteristic classes.
@article{TRSPY_2011_275_a9,
author = {Malkhaz Bakuradze},
title = {Induced representations, transferred {Chern} classes and {Morava} rings $K(s)^*(BG)$: {Some} calculations},
journal = {Informatics and Automation},
pages = {172--180},
publisher = {mathdoc},
volume = {275},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/}
}
TY - JOUR AU - Malkhaz Bakuradze TI - Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations JO - Informatics and Automation PY - 2011 SP - 172 EP - 180 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/ LA - en ID - TRSPY_2011_275_a9 ER -
Malkhaz Bakuradze. Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/