Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The ring structure of Morava $K$-theory $K(s)^*(BG)$ for the 2-group no. 38 of order $32$ from the Hall–Senior list is calculated. Previously it was known that $K(s)^*(BG)$ is evenly generated and for $s=2$ is generated by Chern characteristic classes.
@article{TRSPY_2011_275_a9,
     author = {Malkhaz Bakuradze},
     title = {Induced representations, transferred {Chern} classes and {Morava} rings $K(s)^*(BG)$: {Some} calculations},
     journal = {Informatics and Automation},
     pages = {172--180},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/}
}
TY  - JOUR
AU  - Malkhaz Bakuradze
TI  - Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
JO  - Informatics and Automation
PY  - 2011
SP  - 172
EP  - 180
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/
LA  - en
ID  - TRSPY_2011_275_a9
ER  - 
%0 Journal Article
%A Malkhaz Bakuradze
%T Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations
%J Informatics and Automation
%D 2011
%P 172-180
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/
%G en
%F TRSPY_2011_275_a9
Malkhaz Bakuradze. Induced representations, transferred Chern classes and Morava rings $K(s)^*(BG)$: Some calculations. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 172-180. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a9/