Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_275_a4, author = {A. N. Magazinov}, title = {The family of {bi-Lipschitz} classes of {Delone} sets in {Euclidean} space has the cardinality of the continuum}, journal = {Informatics and Automation}, pages = {87--98}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a4/} }
TY - JOUR AU - A. N. Magazinov TI - The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum JO - Informatics and Automation PY - 2011 SP - 87 EP - 98 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a4/ LA - ru ID - TRSPY_2011_275_a4 ER -
A. N. Magazinov. The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 87-98. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a4/
[1] Delone B.N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62
[2] Gromov M., Asymptotic invariants for infinite groups, Geometric group theory. V. 2, LMS Lect. Note Ser., 182, eds. G.A. Niblo, M.A. Roller, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[3] Bogopolskii O.V., “Beskonechnye soizmerimye giperbolicheskie gruppy bilipshitsevo ekvivalentny”, Algebra i logika, 36:3 (1997), 259–272 | MR
[4] Whyte K., “Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture”, Duke Math. J., 99:1 (1999), 93–112 | DOI | MR | Zbl
[5] Papasoglu P., “Homogeneous trees are bilipschitz equivalent”, Geom. Dedicata, 54:3 (1995), 301–306 | DOI | MR | Zbl
[6] Burago D., Kleiner B., “Separated nets in Euclidean space and Jacobians of biLipschitz maps”, Geom. and Funct. Anal., 8:2 (1998), 273–282 | DOI | MR | Zbl
[7] McMullen C.T., “Lipschitz maps and nets in Euclidean space”, Geom. and Funct. Anal., 8:2 (1998), 304–314 | DOI | MR | Zbl
[8] Garber A.I., “O klassakh ekvivalentnosti mnozhestv Delone”, Model. i anal. inform. sistem, 16:2 (2009), 109–118 | MR